
ted by Chris DiBona, Danese

Mark Stone With a Foreword by Kim Polese

THE CONTINUING

EVOLUTION

O REILLY

open sources 2.0

XX

open sources 2.0
Edited by Chris DiBona Danese Cooper Mark Stone

IHE CONTINUING

EVOLUTION

XX
XX

O REILLY*

Beijing Cambridge Koln London Paris Sebastopol Taipei Tokyo

Open Sources 2.0: The Continuing Evolution

Edited by Chris DiBona, Danese Cooper, and Mark Stone

Copyright 2006 Chris DiBona, Danese Cooper, and Mark Stone. All rights reserved.

Printed in the United States of America.

Published by O Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also

available for most titles (safari.oreilly.com). For more information, contact our corporate/institutional sales

department: (800) 998-9938 or corporate@oreilly.com.

Executive Editor: Mike Hendrickson

Production Editor: Jamie Peppard

Cover Designer: Mike Kohnke

Interior Designer: Mike Kohnke

Printing History:

October 2005: First Edition.

The O Reilly logo is a registered trademark of O Reilly Media, Inc. Open Sources 2.0 and related trade

dress are trademarks of O Reilly Media, Inc.

The essays in Open Sources 2.0are licensed under the Creative Commons Attribution-NonCommercial-

NoDerivs 2.5 license. To view a copy of the license, send a letter to Creative Commons, 543 Howard

Street, Fifth Floor, San Francisco, CA 94105, visit http://creativecommons.Org/licenses/by-nc-nd/2.5/,

or see Appendix B.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed

as trademarks. Where those designations appear in this book, and O Reilly Media, Inc. was aware of a

trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher, editors, and authors

assume no responsibility for errors or omissions, orfor damages resulting from the use of the information

contained herein.

^
This book uses RepKover? a durable and flexible lay-flat binding.

ISBN: 0-596-00802-3

XX

Table of Contents

Foreword: Source Is Everything ix

Kim Polese

Acknowledgments xiii

List of Contributors xv

Introduction xxv

Chris DiBona, Danese Cooper, and Mark Stone

SECTION 1 . Open Source: Competition and Evolution 1

1. The Mozilla Project: Past and Future 3

Mitchell Baker

2. Open Source and Proprietary Software Development 21

Chris DiBona

3. A Tale of Two Standards 37

Jeremy Allison

4. Open Source and Security 57

Ben Laurie

5. Dual Licensing 71

Michael Olson

6. Open Source and the Commoditization of Software 91

Ian Murdock

7. Open Source and the Commodity Urge: Disruptive Models

for a Disruptive Development Process 103
Matthew N. Asay

8. Under the Hood: Open Source and Open Standards Business Models

in Context 121

Stephen R. Walli

9. Open Source and the Small Entrepreneur 137
Russ Nelson

10. Why Open Source Needs Copyright Politics 149

Wendy Seltzer

11. Libre Software in Europe 161

Jesus M. Gonzalez-Barahona

Gregorio Robles

12. OSS in India 189
Alolita Sharma and

Robert Adkins

13. When China Dances with OSS 197
Boon-Lock Yeo, Louisa Liu, and Sunil Saxena

14. How Much Freedom Do You Want? 211
Bruno Souza

SECTION 2 . Beyond Open Source: Collaboration and Community 229

15. Making a New World 231
Doc Searls

16. The Open Source Paradigm Shift 253
Tim O Reilly

17. Extending Open Source Principles Beyond Software Development. . . 273
Pamela Jones

18. Open Source Biology 281

Andrew Hessel

19. Everything Is Known 297

ugene Kim

20. The Early History of Nupedia and Wikipedia: A Memoir 307

Larry Sanger

21. Open Beyond Software 339
SonaliK. Shah

22. Patterns of Governance in Open Source 361

Steven Weber

23. Communicating Many to Many 373
Jeff Bates and Mark Stone

vi xx Table of Contents

SECTION 3 . Appendixes 397

A. The Open Source Definition 399

B. Referenced Open Source Licenses 401

C. Columns from Slashdot 417

Index. . . 423

Table of Contents ** vn

XX
XX

Foreword: Source Is Everything

The software industry has always been caught between two perspectives: one

anchored in supply, the other in demand. To the market s supply side (the vendors),

commodities and "commoditization" have always been threats. To the demand side

(the customers), commodities have always been useful.

The latter view is winning, thanks to open source. And we re only beginning to dis

cover how much larger the market will be, now that it s filling with useful open

source commodities. These commodities, in most cases, have little or no sale value,

but are useful for building countless other businesses. The combined revenues of

those businesses will far exceed revenues of companies that make their money sell

ing software.

Use value precedes sale value in every market category. Think about it. Agriculture

started with gardening. Textiles started with weaving and knitting. Meat packing

started with herding. Construction started with hut building.

What did the software industry start with? In a word, programming. As Eric S. Raymond
said in the first chapter of the original Open Sources, "In the beginning were the Real Pro

grammers." To Raymond, real programming was both legacy and destiny a source that

began with
"guys

in polyester shirts, writing in machine and assembler and FORTRAN,"

and ran through Unix programming and the free software movement, to arrive at "Linux

development and mainstreaming of the Internet."

That latter phrase captured where the industry was when Open Sources was pub

lished in January 1999. The Internet, Raymond noted, "has even brought hacker cul

ture to the beginnings of mainstream respectability and political clout."

A half-decade later, open source has grown far beyond the mainstream. It has

become the bedrock over which the mainstream flows. Today it is hard to find a For

tune 500 company with an IT infrastructure that does not depend, in some funda

mental way, on open source software.

The Internet mainstreamed programming by putting every programmer zero dis

tance from every other programmer in the world. Supported by this extreme conve

nience the demand side began supplying itself in a global way. "Real Programmers"

were back in power. This time, however, real programmers were a legion, not a mere

handful, and the tools they needed could be found on any PC, not just on the infra

structure inside large organizations.

Today power comes from everybody who creates anything that s useful to anybody
and that any other programmer can improve.

Today there are hundreds of thousands of hackers, perhaps millions. Whatever the

number, many more will soon arrive from Asia, South America, Africa, and other for

merly Net-less places all over the world.

The technology sector s industrial age the one in which manufacturers built plat

forms for silos in which customers and users were trapped will, in retrospect,

appear to be an early growing stage: a necessary but temporary step toward a healthy

and mature marketplace.

Let s give credit where it s due: developing software and hardware in the early days of

the computing industry was like settling Mars. Every company had to build its own air

tight habitat, from the ground up. Making hardware and compatible software inside

your own habitat was hard enough. Trying to become interoperable with anybody
else s environment was nearly unthinkable. Even within large companies like IBM,

whole systems were incompatible with whole other systems. Remember Systems 34,

36, and 38, which used twin-ax cabling while IBM mainframes used co-ax?

All these closed habitats naturally fell in to fighting. The press supported the battling-

vendor view of the marketplace, which became a form of entertainment, dramatized

via continuous coverage of the vendor wars.

The Net obviates the need to build closed habitats. You don t need to make your own
bedrock anymore. Open source commodities provide all the base infrastructural

building materials you need, and then some.

Naturally, the old supply side felt threatened by that. For a while.

Foreword: Source Is Everything

Then the demand side (the programmers) inside those silos began using open source

to build solutions to all kinds of problems. Today IBM, Novell, HP, Sun nearly

every big platform and silo company other than Microsoft have shifted their prod

uct strategies to take advantage of abundant open source commodities in the market

place. They also contribute, in most cases, to the development projects that continue

to produce those commodities. While the decisions to
"go open source" were made

at the tops of those companies, in every case they also involved ratification of deci

sions already made by the companies own engineers.

You can still build platforms today, of course, but for practical considerations, it only

makes sense to build them on top of open source infrastructure. Amazon and Google

are familiar platform businesses (one for retailing, the other for advertising), built on

cheap or free open source building materials.

The portfolio of open source building materials now runs to 100,000 or more prod

ucts, each the project of a hacker or community of hackers, each producing goods,

the primary purpose of which is to be useful, not just to sell. Because that software is

useful, and most of it doesn t have a proprietary agenda, whole market categories can

be opened where once only proprietary platforms and silos grew.

Take the private branch exchange (PBX) telephone business. In the old days, which

are now starting to end, companies had to choose corporate phone systems from

Toshiba, Panasonic, NEC, Nortel, and other manufacturers of closed proprietary

platforms and silos. Then a small device maker, Digium, released Asterisk, an open
source PBX. In addition to a vigorous development community, Asterisk attracted

countless varieties of businesses made possible by its wide-open use value. In the

long run, far more money will surely be made because of Asterisk than could ever

have been made by selling Asterisk or even by selling the proprietary PBXes that

Asterisk now obsoletes.

So, thanks to open source, the software market is finally growing up. It is becoming
mature. Its healthy new ecosystem is made possible by countless commodities, grow

ing more numerous every day.

There is an important difference, however, between open source commodities and

those derived from raw materials (like wood or steel) that is harvested or mined. It s

a difference that will make the new, mature, software marketplace incalculably large.

The difference is this: open source commodities are produced by creative and

resourceful human minds. Not by geology, biology, and botany. This means there is

neither a limit to the number of open source products, nor a limit to the number of

improvements.

Foreword: Source Is Everything

Yet every one of those open source projects is concerned mostly with the improve
ment of their own products. While they care about how those products interoperate

with other products, they can t begin to account for all the combined possibilities

where interoperation is required. That means there is room for businesses to test,

certify, and support combinations of open source products.

That s what attracted me into the vast and growing new marketplace opened by a

growing abundance of open source building materials. Like many industry veterans,

I didn t see that opportunity until I moved my point of view from the supply side

that felt threatened to the demand side that felt empowered.

And I m hardly alone.

Some will say we re at the beginning of another boom or worse, another bubble.

Those views are both limited and misleading. Open source has changed the world

of software into one in which raw materials are literally limitless. Every mature

industry such as construction, automobiles, computing hardware has experi

enced hyper-accelerated growth resulting from commoditization of its core build

ing blocks. But the impact on the software industry has the potential to be far more

profound, because software is so malleable, so easily shared now, and so increas

ingly ubiquitous in everyday life.

So, while open source software, and the commoditization it brings to the software

industry, may seem a threat today, it is actually ushering in a wave of enormous

innovation and productivity the impact of which has already reached far beyond
this industry.

It comes down to one simple truth: we humans naturally desire to improve our own
world through building useful tools. In sharing those tools, we ve learned that the

world around us gets better too. So the idea of open source is as old as civilization

itself. And our very modern industry is finally realizing the power contained in this

simple fact: the first source for everything we make is ourselves.

KIM POLESE, CEO, SPIKESOURCE

xii X Foreword: Source Is Everything

XX
XX

Acknowledgments

Chris DiBona: Like its predecessor, the publication of Open Sources 2.0 represents

the work of dozens of people both inside and outside of O Reilly. It was my pleasure

and privilege to work with Mark Stone again, and Danese Cooper was invaluable to

the creation of the book. The inspiration behind the international section was hers,

and she should be called out for that. In the first Open Sources I noted that Mark had

said that "a book could be written about how this book was written." And while this

one s creation was hardly as dramatic, it was no less challenging.

Special thanks to Mike Hendrickson, our O Reilly editor, who made it almost too easy.

Thanks to Tim, Rael, and Nat for the books, conferences and knowledge that your

company has crammed into my brain. Keep up the great work! Additionally, thanks to

the folks at Google who allowed me the spare cycles to produce the book so, thanks

Bill Coughran! I d also like to extend my love to Denise and Neil Kruse, my parents

Bennie and Cynthia, and especially my sister Trish we miss you.

Finally, in the last Open Sources, I dedicated it to my patient girlfriend Christine, and

now I dedicate this book and all my life s works to my wife Christine and our daugh

ter Frannie. I love you more than I can say.

Danese Cooper: Thanks to my family Joey, Adi, Zoe & Marie who have put up

with lots of absences as I ve traveled the world meeting open source people. Thanks

also to my friends, especially Brian Behlendorf and Tim O Reilly, and to all essay

writers for agreeing that there should be an update on Open Sources. Thanks to my
employers at Sun, and now Intel, for giving me space to work on the book, and to

X nil

my colleagues at the Open Source Initiative for including me in the work. And

finally, thanks to my co-editors, Chris and Mark, who had all the experience from

creating the first book and generously shared it.

Mark Stone: This book is dedicated to my wife Karen and my son Alex; may your

future always be open. Looking at the list of contributors here, I realize the three of

us really do stand on the shoulders of giants and are privileged to facilitate what

they have created. Several people at O Reilly deserve special praise: Tim O Reilly,

for having the vision to recognize that the time was right for this book; Mike Hen-

drickson, who waited so patiently for the final manuscript; and Jamie Peppard,

Marlowe Shaeffer, Audrey Doyle, and Rob Romano, who had the difficult produc

tion task of turning a wide range of formats and styles into a unified whole. My co-

editors, Chris and Danese, have been invaluable and inspiring colleagues through

out this whole process. Finally, I d like to thank xeno42, elcoronel, and beret for

the example they set and the education they ve given me; you guys live the ideal

every day that the rest of us can only talk about.

xiv X Acknowledgments

List of Contributors

Danese Cooper has a 15-year history in the software industry, and has long been an

advocate for transparent development methodologies. Danese worked for six years at

Sun Microsystems, Inc. on the inception and growth of the various open source

projects sponsored by Sun (including OpenOffice.org, java.net, and blogs.sun.com).

She was Sun s chief open source evangelist and founded Sun s Open Source Pro

grams Office. She has unique experience implementing open source projects from

within a large proprietary company. She joined the Open Source Initiative (OSI)

board in December 2001 and currently serves as secretary and treasurer. As of March

2005, Danese is with Intel to advise on open source projects, investment, and sup

port. She speaks internationally on open source and licensing issues.

Chris DiBona is the open source programs manager for Mountain View, California-

based Google, Inc. Before joining Google, Chris was an editor/author for the popular

online web site, Slashdot. He is an internationally known advocate of open source

software and related methodologies. Along with Mark Stone and Sam Ockman, he

edited the original Open Sources. He writes for many publications and speaks interna

tionally on software development and digital rights issues. His home page and blog

can be found at http://dibona.com.

Mark Stone has made a career of studying collaborative communities. As a univer

sity professor with a Ph.D. in philosophy of science, he has studied and published on

the disruptive community conditions that create scientific revolutions. More recent

work has involved the open source community, as editor for Morgan Kaufmann Pub

lishers covering operating systems and web technology, then as executive editor for

open source topics at O Reilly, and as the editor-in-chief of the Journal of Linux Tech

nology. While at O Reilly he co-edited, with Chris DiBona and Sam Ockman, the

seminal Open Sources in 1999. For the last six years he has worked with various dot

coms on tools and practices for collaboration and online community building,

including as part of the executive team managing top-tier technology sites such as

Slashdot (3.5 million page views per day served), and SourceForge.net (1 million

registered users). As director of product development for ManyOne Networks, he is

currently working on the next evolution of online community, leveraging 3D envi

ronments and new tools for knowledge management. Mark holds a Ph.D. in philoso

phy of science from the University of Rochester, and earned his B.A. in philosophy
from the University of Maryland. Mark can be reached at mark.stone@gmail.com.

Robert Adkins is cofounder of Technetra, a Silicon Valley software company which

implements and deploys large-scale software projects specializing in open source

solutions. Robert has more than 20 years of experience in the information technol

ogy industry, having led products and services groups at Apple Computer, IBM, BBN

Communications, and Litton/PRC. He has an M.S. in computer science from Johns

Hopkins University. He has published in many technology magazines and journals

including Linux Journal, LINUX For You, the Journal of the ACM, and Government

Computer News and speaks frequently at international technology events. Robert can

be reached at radkins@technetra.com.

Jeremy Allison is one of the lead developers on the Samba Team, a group of program
mers developing an open source Windows-compatible file and print server product for

Unix systems. Developed over the Internet in a distributed manner similar to the Linux

operating system, Samba is used by multinational corporations and educational estab

lishments worldwide. Jeremy handles the coordination of Samba development efforts

worldwide and acts as a corporate liaison to companies using the Samba code commer

cially. He works for Novell, which funds him to work full time on improving Samba

and solving the problems of Windows and Linux interoperability.

Matt Asay has been involved with open source since 1999, and has made a fetish of

understanding novel ways to monetize open source software. To this end, Matt

founded the Open Source Business Conference as a place to aggregate and cluster

people much more intelligent than he to figure out promising open source business

strategies; cofounded Novell s Linux Business Office and helped to kick-start the

company s growing Linux business; served as an entrepreneur-in-residence at

Thomas Weisel Venture Partners, dedicated to finding and developing open source

investment opportunities; and ran embedded Linux startup Lineo, a network and

communications business, until its acquisition by Motorola in 2002. Matt speaks and

publishes frequently on open source business strategy, and consults frequently for

several open source startups and venture capital firms.

xvi X List of Contributors

Matt is currently the general manager at Volantis Systems, where he manages the

company s growing business with content providers (like eBay, Disney, and Yahoo!).

He is applying the lessons of open source to the fragmented mobile world, hoping it

will yield the same standardization and opportunity in mobile/embedded that open
source did for the server world.

Matt holds a J.D. from Stanford, where he worked with Professor Larry Lessig on

analyzing the GPL and other open source licenses.

Mitchell Baker has been the general manager of the Mozilla project (officially known

as its Chief Lizard Wrangler) since 1999. The Mozilla project strives to create great

software and maintain choice and innovation in key Internet client applications, such

as its flagship Mozilla Firefox and Mozilla Thunderbird products. It is one of the larg

est open source software development projects in existence. The Mozilla project

combines dedicated volunteers, a set of paid contributors, and its own flavor of engi

neering management.

With the formation of the Mozilla Foundation in 2003, Mitchell also took on the role

of president of the Mozilla Foundation. Mitchell is also a board member of the Open
Source Applications Foundation, which is developing a new-style personal informa

tion manager, known as Chandler.

Jeff Bates brings many years of strategic management and editorial leadership to the

Open Source Technology Group (OSTG). As vice president of editorial operations

and executive editor of Slashdot, Jeff is responsible for setting strategy and integra

tion for the company s business development partnerships and for driving new site

and product development, and for fun he helps manage strategic story editing and

placement for the leading proprietary news site, Slashdot. While at Slashdot, Jeff has

been responsible for the site winning several industry awards including a Webby

People s Voice Award for Community, as well as Yahoo ! s
"Top

100" Best of the

Internet Award. Slashdot has also been cited by The Washington Post, Brill s Content,

TIME, USA Today, Rolling Stone, and other industry-leading publications as one of the

most innovative and important sites for the technical community.

Jeff has spoken at numerous academic institutions and industry-leading conferences

and events, including MIT, LinuxWorld, Worcester Polytechnic Institute, Northern

Michigan University, Sun Developers Group, the Asian Open Source Symposium,
Conference of Australian Linux Users, O Reilly s p2p Conference, and the University

of Michigan. He s also a member of the Open Source Advisory Panel for the U.S. gov

ernment. Jeff holds a bachelor s degree in history from Hope College.

Jesus M. Gonzalez-Barahona teaches and conducts research at the Universidad Rey

Juan Carlos, Mostoles (Spain). He started to work in the promotion of libre software

in 1991. Since then, he has carried on several activities in this area, including orga

nizing seminars and courses and participating in working groups on libre software,

in Spain and throughout the rest of Europe. Currently he collaborates with several

libre software projects (including Debian) and associations, writes in several media

about topics related to libre software, and consults for companies and public admin

istrations on issues related to their strategy on these topics. His research interests

include libre software engineering, and in particular, quantitative measures of libre

software development and distributed tools for collaboration in libre software

projects. In this area, he has published several papers, and is participating in some

international research projects (visit http://libresoft.urjc.es for more information). He is

also one of the promoters of the idea of a European masters program on libre soft

ware, and has specific interest in education in that area. On the personal side, he

enjoys living, sleeping, and staying with his family (and not in that order).

Andrew Hessel is a biologist and programmer who has worked at the interface of

industry and academia to facilitate scientific initiatives, usually in the area of genom-
ics. He is fascinated by the functional similarities between electronic and biological

systems, and the lessons that can be learned by comparing them. Andrew lives in

Toronto, Canada, with his wife Stephanie, and works to advance collaborative breast

cancer research and therapeutic development.

Pamela Jones is the founder of Groklaw (http://www.grofelaw.net), an experiment in

applying open source principles to the field of legal research. Groklaw is also an

independent journalistic voice, covering legal news stories from the point of view of

the Free and Open Source (FOSS) community. Groklaw is also an anti-FUD web site.

It has focused heavily on the SCO litigation, because the community is, after all,

while not a direct party to any of the lawsuits, directly interested in and affected by
the outcome, since it is their code and their community that is under attack. For that

reason, Pamela found it is both natural and appropriate that Groklaw try to contrib

ute to a positive outcome.

Eugene Kim is the cofounder and principal of Blue Oxen Associates, a think tank

and consultancy focused on improving collaboration. He has developed collabora

tive strategies for a number of organizations, focusing especially on interorganiza-

tional collaboration and collaborative learning. His research centers around identify

ing patterns of collaboration across different domains (with a special focus on open
source communities) and on improving the interoperability of collaborative tools.

Previously, Eugene worked closely with computer pioneer Doug Engelbart, who cur

rently serves on the Blue Oxen Associates advisory board. He received his A.B. in his

tory and science from Harvard University.

Ben Laurie is a founding director of the Apache Software Foundation, a founder and

core team member of OpenSSL, the author of Apache-SSL, director of security for

The Bunker Secure Hosting Ltd.l, coauthor of Apache: The Definitive Guide, and a fre

quent writer of articles and papers on security, cryptography, and anonymity. You

can find his web page at http://www.apache-ssl.org/ben.html.

xvinX List of Contributors

Louisa Liu is business development manager of the Channel Software Operation

(CSO) in Intel China Ltd. She is responsible for strategic business development in

China supporting the CSO. Louisa earned bachelor and master s degrees with hon

ors in computer science from Fudan University and Tongji University.

Ian Murdock is cofounder, chairman, and chief strategist for Progeny. He is cen

trally involved in defining Progeny s technology and business strategies, and in estab

lishing and maintaining key relationships with customers and partners. Ian has more

than 10 years of experience in the software industry. He played an instrumental role

in the transition of Linux from hobby project to mainstream technology by creating

Debian, one of the first Linux-based operating systems, called distributions. Ian led

Debian from its inception in 1993 to 1996, building it from an idea to a worldwide

organization of more than 100 people in less than three years.

Today Debian is one of the most popular Linux platforms in the world, with mil

lions of users worldwide. Debian is also widely considered one of the most success

ful and influential open source projects ever launched: more than 1,000 volunteers

in all parts of the world are currently involved in Debian development, and the

founding document of the open source movement itself was originally a Debian posi

tion statement.

An Indiana native, Ian holds a B.S. in computer science from Purdue University and

was a founding director of Linux International and the Open Source Initiative.

Russ Nelson is a computer programmer and a founding board member of the Open
Source Initiative. He is best known for his packet driver collection, begun while at

Clarkson University in 1988. He started Crynwr Software to support his open source

software, Freemacs (currently used by FreeDOS) and Painter s Apprentice (a Mac

Paint clone), and went full time with the packet driver collection in 1991. He has

been making a living from open source support ever since then. His politics are both

left and right of center, as he is a pacifist Quaker and a member of the Libertarian

Party of the United States.

Michael Olson is president and chief executive officer of Sleepycat Software.

Michael, one of the original authors of Berkeley DB, is a technology industry veteran

with more than 20 years of experience in engineering, marketing, sales, and business

management. He was named president and CEO of Sleepycat in 2001 after serving as

vice president of sales and marketing. Prior to Sleepycat, he served in technical and

business management positions at database vendors Britton Lee, Illustra, and Infor

mix. He holds B.A. and M.A. degrees in computer science from the University of Cal

ifornia at Berkeley.

Tim O Reilly is founder and CEO of O Reilly Media, thought by many to be the best

computer-book publisher in the world. In addition to publishing pioneering books

such as Ed Krol s The Whole Internet User s Guide &&gt; Catalog (selected by the New York

List of Contributors X xix

Public Library as one of the most significant books of the 20th century), O Reilly Media

has also been a pioneer in the popularization of the Internet. O Reilly s Global Network

Navigator site (GNN, which was sold to America Online in September 1995) was the

first web portal and the first true commercial site on the World Wide Web.

O Reilly Media continues to pioneer new content developments on the Web via its

O Reilly Network affiliate, which also manages sites such as Perl.com and XML.com.

O Reilly s conference arm hosts the popular Perl Conference, the Open Source Soft

ware Convention, and the O Reilly Emerging Technology Conference.

Tim has been an activist for Internet standards and for open source software. He has

led successful public relations campaigns on behalf of key Internet technologies,

helping to block Microsoft s 1996 limits on TCP/IP in NT Workstation, organizing

the "summit" of key free software leaders where the term open source was first widely

agreed upon, and, more recently, organizing a series of protests against frivolous soft

ware patents. Tim received Infoworld s Industry Achievement Award in 1998 for his

advocacy on behalf of the open source community.

Tim graduated from Harvard College in 1975 with a B.A. cum laude in classics. His

honors thesis explored the tension between mysticism and logic in Plato s dialogs.

Gregorio Robles is a teaching assistant and a Ph.D. candidate at the Universidad Rey

Juan Carlos in Madrid, Spain. His research work is centered in the empirical study of

libre software development from a software engineering point of view. He has

authored or coauthored many papers that were presented at both academic and com

munity conferences, and has developed or collaborated in the design of programs to

automate the analysis of libre software. He has also been involved in the seminal

European Union FLOSS study and survey on libre software developers, the CALIBRE

coordinated action to foster libre software development in Europe, and the FLOSS-

World study which looks at libre software development worldwide, all of them

financed by the European Commissions 1ST program.

Larry Sanger was the chief organizer/architect of the Wikipedia encyclopedia project

in its first year, as well as of the now-moribund Nupedia encyclopedia project. Since

2000 he has thought and written about the best ways to develop a collaboratively

built online encyclopedia. He is now working on that problem, among others, for the

ambitious Digital Universe project as its director of distributed content programs. His

Ph.D. (2000) from Ohio State University is in philosophy, with concentrations in

epistemology and early modern philosophy, and his B.A. in philosophy is from Reed

College in Portland, Oregon. He taught a wide range of philosophy courses off and

on between 1992 and 2005 for Ohio State University and nearby institutions. He

also plays Irish traditional music on the fiddle and has taught that too, off and on

since 1997.

xx
*
* List of Contributors

Sunil Saxena is senior principal architect in the Software and Solutions Group (SSG)

at Intel Corporation. SSG is responsible for operating system enabling on Intel archi

tecture products. Sunil received his Ph.D. in computer science from the University of

Waterloo and received his B. Tech. in electrical engineering from Indian Institute of

Technology, Delhi, in 1975.

Doc Searls is a writer and speaker on topics that arise where technology and busi

ness meet. He is the senior editor of Linux Journal, the premier Linux monthly and

one of the world s leading technology magazines. He also runs the new Doc Searls IT

Garage, an online journal published by Linux Journal s parent company, SSC. He is

coauthor of The Cluetrain Manifesto: The End of Business as Usual, a New York Times,

Wall Street Journal, Business Week, Borders Books, and Amazon.com bestseller. (It was

Amazon s #1 sales and marketing bestseller for 13 months and sells around the world

in nine languages.) He also writes the Doc Searls weblog. J.D. Lasica of Annenberg s

Online Journalism Review calls Doc "one of the deep thinkers in the blog movement."

Doc s blog is consistently listed among the top few blogs, out of millions, by Techno-

rati, Blogstreet, and others.

Wendy Seltzer is an attorney and special projects coordinator with the Electronic

Frontier Foundation, where she specializes in intellectual property and free speech
issues. In the fall of 2005, she will be at Brooklyn Law School as a visiting professor

of law. As a fellow with Harvard s Berkman Center for Internet &lt;Sr Society, Wendy
founded and leads the Chilling Effects Clearinghouse, helping Internet users to

understand their rights in response to cease-and-desist threats. Prior to joining EFF,

Wendy taught Internet law as an adjunct professor at St. John s University School of

Law and practiced intellectual property and technology litigation with Kramer Levin

in New York. Wendy speaks frequently on copyright, trademark, open source, and

the public interest online. She has an A.B. from Harvard College and a J.D. from Har

vard Law School, and occasionally takes a break from legal code to program (Perl).

Sonali K. Shah is an assistant professor at the University of Illinois at Urbana-Cham-

paign. Her research focuses on the creation and maintenance of novel organizing
innovation communities that support innovation development and diffusion. She

studies innovation communities in fields as diverse as open source software, sports

equipment, and medical products. A second stream of work examines the processes

underlying the formation of new industries and product markets. Previously she

worked at Morgan Stanley & Co. and McKinsey & Co. She holds degrees in biomed-

ical engineering, finance, and management. She is a graduate of the University of

Pennsylvania and the Massachusetts Institute of Technology.

Alolita Sharma is cofounder and CEO of Technetra, a Silicon Valley software com

pany which implements and deploys large-scale software projects specializing in

open source solutions. Alolita has more than 14 years of experience in the informa

tion technology industry, having engineered and led services groups at IBM, MCI

List of Contributors X xxi

Worldcom, Intelsat, and SWIFT. While pursuing the Ph.D. program in computer sci

ence at George Washington University (GWU), she concentrated on networking,

security, and parallel computing. She received an M.S. in computer science also from

GWU. She speaks at technology forums and has published in many technology mag

azines and journals including Linux Journal, Linux Gazette, and is a monthly colum

nist for India s only open source magazine, LINUX For You. She is a proponent of

Linux and open source software in India. Alolita can be reached at as@technetra.com.

Bruno Souza is a senior consultant at Summa Technologies. He helps large compa

nies to successfully use and develop open source products and projects. Bruno is

president of Soujava, Brazil s largest Java User Group, where he has led the group s

Javali Project, an ambitious umbrella project that hosts 10 large open source projects.

Javali, which includes a project to create an open source Java runtime, is targeted to

bring software development into Brazil s open source discussions. Bruno also co-

authored Soujava s Open Source Manifest, which discusses open source and open

standards as the way to correctly apply and succeed with open source in Brazil. The

document positively influenced the adoption of open source in Brazil. Bruno is a

member of the Management Board ofjava.net, one of the largest open source hosting

sites for Java developers, where he leads the World Wide Java User Group Commu

nity, is an activist for the creation of open source-compatible implementation of Java

standards, and is an active participant in several Java open source projects.

Stephen R. Walli has worked in the IT industry since 1980 as both customer and

vendor. He is presently the vice president of Open Source Development Strategy for

Optaros. Stephen is responsible for architecting and managing Optaros s relation

ships with the open source community. Most recently, Stephen was a business devel

opment manager at Microsoft on the Windows Platform team, where he operated in

the space between community development, standards, and intellectual property

concerns. While at Microsoft, he also worked on the Rotor project (Shared Source

CLR), and started as the product unit manager for Interix in Services for Unix.

Prior to Microsoft, Stephen was the vice president of R&D and a founder at Softway

Systems, Inc., a venture-backed startup that developed the Interix environment to re-

host Unix applications on Windows NT. Stephen has also worked as an indepen

dent consultant for X/Open, SunSoft, UNISYS, and the Canadian government. He

was once a development manager at Mortice Kern Systems, and a systems analyst at

Electronic Data Systems.

Stephen was a longtime participant and officer at the IEEE and ISO POSIX standards

groups, representing both USENIX and EurOpen (E.U.U.G.), and has been a regular

speaker and writer on open systems standards since 1991.

He blogs at http://stephesblog.blogs.com,
and occasionally podcasts from http.7/

stephenrwalli.users.blogmatrtK.com/poacasts.

xxii * C List of Contributors

Steven Weber, a specialist in international relations, is an associate with the Berke

ley Roundtable on the International Economy (BRIE) and the International Com

puter Science Institute, and affiliated faculty of the Energy and Resources Group. His

areas of special interest include international politics, and the political economy of

knowledge-intensive industries.

Steven went to medical school at Stanford and then earned his Ph.D. in the political

science department at Stanford. In 1992, he served as special consultant to the presi

dent of the European Bank for Reconstruction and Development in London. He has

held academic fellowships with the Council on Foreign Relations and the Center for

Advanced Study in the Behavioral Sciences. He is a member of the Global Business

Network in Emeryville, California, and actively consults with government agencies

on foreign policy issues, risk analysis, strategy, and forecasting.

Boon-Lock Yeo is currently director of the ICSC (Intel China Software Center) of the

SSG (Software and Solutions Group) in Intel China Ltd. He received his Ph.D. in

electrical engineering from Princeton University and a BSEE from Purdue University.

He received an IEEE Transactions Best Paper Award in 1996, has published more

than 40 technical papers, and holds 25 U.S. patents.

List of Contributors
*
* XXHI

XX
XX
Chris DiBona, Danese Cooper,
and Mark Stone

Introduction

Midnight comes to the Nevada desert, and nothing is visible but a line of taillights

ahead and a line of headlights behind.

"You ll see the lights from Gerlach first, and then Black Rock
City,"

the driver says to

the passenger. They drive another 20 minutes in silence before the highway crests a

ridge line. On the horizon, the blackness is broken by a band of multicolored light.

"Is that Gerlach?" the passenger asks.

"No." The driver points to a small, dim cluster of yellow lights in the middle dis

tance. "That s Gerlach. Way out there, those lights are Black Rock City. We re still

about an hour
away."

The passenger ponders this for a moment, then asks, "An hour? How big is it?"

"For one week each year, Black Rock City is the fourth largest city in Nevada. Popu
lation 30,000, give or take."

Gerlach rolls by, with its one bar, one gas station, and one motel. The caravan of cars

bunches up after Gerlach. Then they turn off the highway, rumbling over the packed
mud playa of the Black Rock Desert. Lights, neon, and thousands of RVs spread out

before them. Music and drums especially drums can be heard in the distance. At

the gate they re approached by someone who looks like a transplant from Mardi

Gras: face paint, bright-colored suit, and a carnival hat. He checks their tickets and
flashes them a big grin.

XXV

"Welcome to Burning Man!

When the original Open Sources was published in 1999, it served mainly as an affir

mation that open source existed. The book brought together the leading voices in

open source, demonstrating that we were a community, that we were indeed a move

ment to be taken seriously. To put that time in context:

Microsoft had, only a year earlier, leaked the "Halloween Memo," its first semi-

public acknowledgment that open source was a competitive threat.

IBM had provided some initial backing for Apache, but had yet to announce its

$1 billion Linux initiative.

Linux was in only the 2.2 stage of kernel development.

SourceForge.net was a relatively new site with only a few hundred projects

hosted.

The mainstream press could not separate rising interest in open source from dot-corn

bubble hype. The media took the surface ideas of Eric Raymond s The Cathedral & the

Bazaar and created a caricature of legions of hobbyist programmers distributed

across the globe, competing against the technology Goliaths of the day. That picture

bore no more resemblance to reality than the tale of King Arthur does to the histori

cal Middle Ages. Yet like any good mythology, it serves as a useful point of depar

ture for understanding the real history from which it arose.

Today open source is an accepted fact of business life, with many companies engaged

in core open source business models (Sleepycat, MySQL) or significant hybrid models

blending open source and proprietary software (IBM, Novell, Red Hat). Many compa
nies have striven to incorporate open source development into their range of software

development practices even Microsoft has projects hosted on SourceForge.net. How
much do we really understand about the dynamics of open source software develop

ment or the communities that stand behind those projects?

The essays presented in this volume take a major step forward in our understanding

since 1999, when the original Open Sources was published.

Burning Man is approaching its 20th anniversary. Conceived and inspired by Larry

Harvey, it began in 1986 as a gathering of dozens of participants at Baker Beach in

San Francisco. The centerpiece of the event was then, as it is now, the construction

of a wooden effigy of a man, which is burned in celebration.

Celebration of what? The answer to that question may differ for every participant.

xxvi ** Introduction

The event was originally timed with the summer solstice it s now held the week

leading up to Labor Day and has always had a pagan, tribal feel to it. Participants

began bringing their own art projects, many of which were also burned in celebra

tion at the climax of the event. By 1990 the gathering numbered in the hundreds,

and even the unusually tolerant San Francisco police made it clear that the event

needed to find another venue.

Burning Man then moved to its current location the Black Rock Desert an empty
stretch of Nevada desert on federal Bureau of Land Management land, roughly two

hours north of Reno. The extreme remoteness and the harsh environment have become

an indelible part of the event. To be there, you have to really want to be there.

Mitchell Baker makes clear in her essay that part of the strength of the Firefox commu

nity is its size. Thousands of people have contributed to Firefox, a community of con

tributors larger than the core project leaders can really envision. Firefox seems very
much like one of those mythical "legion

of programmers" projects that comes to mind
when people think of the metaphor suggested by Eric Raymond s The Cathedral & the

Bazaar.

Yet the open source development model remains the most enigmatic aspect of the

open source community. One striking and unexpected outcome of the years since

the original Open Sources is how little technology companies have been able to lever

age the open source development process. Projects such as Linux and Apache have

had world-changing success, yet no commercial software company has been able to

replicate this development process for its own products or its own success. AOL, for

example, has never figured out how to integrate the Mozilla/Firefox developer com

munity into its product development process. Sun has struggled to open up both

Java and Solaris, and the jury is very much out on the success of those projects.

Read the essays here by Chris DiBona and Jeremy Allison and you will see how little

proprietary software development differs from open source software development.
The differences their essays suggest are subtle: an emphasis on knowledge reuse, not

just code reuse; a recognition that open standards matter; and that architecture needs
to be created with openness in mind. Why, though, are these and other open source

lessons so hard for commercial companies to use?

The real paradox is as old as Fred Brooks classic, The Mythical Man-Month. In this

work, Brooks formulates what has become known as Brooks Law: that while the

amount of programming work completed increases linearly as the number of pro
grammers increases, the complexity of a project increases as the square of the num
ber of programmers. The result is that large programming teams fail to reduce the

time to project completion. The rationale is that the number of communication inter

faces, which is roughly equivalent to the amount of coordination effort the project

requires, increases geometrically as more people are added to the project.

Introduction X xxvn

Brooks Law appears to set a fundamental limit on the optimal size of programming
teams and a rather small limit at that. Empirical evidence supports Brooks Law.

For example, since its inception SourceForge.net has maintained very close to a 10:1

ratio of registered users to registered projects, suggesting that open source develop

ment projects seldom have more than 10 active developers.

What are we to make, then, of the thousands of Firefox contributors? The key is to

recognize that they are not a homogeneous mass of contributors, and Firefox is not a

monolithic piece of software. In fact, the design is highly modular, enabling small

teams to work on separate components of the code without interfering with each

other. By far the most common characteristic open source projects have is a highly

modular design. That design architecture is more a choice of social engineering than

technical engineering, however. In the original Open Sources, Linus Torvalds com

mented that he started with a monolithic kernel design for Linux because he knew it

would provide higher performance. Only later was Linux s distinctive system of load

able kernel modules developed, and it was developed as much out of a project man

agement need as anything else. Could Apache provide higher performance as a

purely monolithic piece of code? Probably. But the development process would

become unmanageable. The original release of Mozilla suffered terribly because it

was a monolithic piece of code. Firefox is the result of years of rearchitecting to

achieve a modular, and thus manageable, design architecture.

Once it s clear that programming teams must necessarily be small, and that modular

ity is driven by communication and management needs more than by engineering

needs, the structure of the open source community makes a lot more sense. The

"bazaar" looks less like a bustling, homogenous mass and more like a structured

community. More than anything, it resembles a tribe.

In fact, there is very little of Brooks Law that is unique to software development. Any

creative, collaborative knowledge enterprise faces the same constraints, and as a

result, many collaborative communities adopt the same tribal structure.

Traditionally Black Rock City is laid out in a half-circle, with a grid of "streets," some

of which form the spokes of the wheel, and others of which form concentric rings

spreading from the center. At the very center is the Man, 40 feet of elegantly assem

bled wood, awaiting his night of conflagration at the end of the weeklong event.

A "burner" approaches a small tent encampment at the corner of 7 O clock and Justice.

Out of the back of a pickup truck, two men from the encampment haul bags of sand

and large rocks painted in black-light colors. They place the rocks inside a wooden

sandbox and pour sand into it. Above them, a hand-painted sign reads "Reflections in

Sand."

"So, what s your project?"
asks the passerby.

XXVIII

One of the men looks up, squinting under the relentless desert sun. "We re making a

Zen
garden,"

he replies. He gestures toward a black light and generator lying nearby
next to a couple of small, handmade wooden rakes.

"Only
this will be one you can

enjoy at
night."

"Where are you guys from?"

"San Francisco."

"You drove 350 miles to bring sand to the desert? Cool."

Burning Man is a participatory event. According to its mission statement (http://

\vww.bumingmanxom/whatisburningman/about_burningman/mission.html):

Our intention is to generate society that connects each individual to his or her

creative powers, to participation in community, to the larger realm of civic life,

and to the even greater world of nature that exists beyond society.

While not everyone who comes brings an art project, the expectation is that projects
will be interactive in nature and that no one is there simply to observe. All are there

to participate. Burning Man has no "audience." While the event is not a political

gathering, many projects have a definite message connecting to that
"larger

realm of

civic
life," and to encourage this, each year Burning Man has an overall theme.

Recent themes have included "The Vault of Heaven," "Beyond Belief," and "The

Floating World."

Several other ideas underpin the spirit of Burning Man. Black Rock City LLC has had
a delicate relationship with the Bureau of Land Management over the years, striving
to show that the event is a positive part of the area. A key part of this is Burning
Man s "leave no trace" philosophy. Art projects are not permanent, but are designed
to be temporary, something can be removed or destroyed at the end of the event

without leaving trash behind. Volunteers spend weeks after each event restoring the

Black Rock Desert to its pre-event conditions. The "leave no trace" policy is not just a

practical matter, though: it is also a good philosophical fit with the civic aspect of the

event and with the fragile sense of the temporary that has been at the heart of the

event since the first Burn.

Burning Man is also basically a nocturnal event. At roughly 6,000 feet elevation, the

Black Rock Desert air is thin and dry. Daytime temperatures can hover around 100

degrees, so dehydration is the most common condition treated at the infirmary. As
the sun goes down each day, people pause at whatever they are doing, look toward
the craggy western hills, and cheer. Drums begin to beat. Music begins to play. Black
Rock City comes alive.

Temporary, participatory, and nocturnal: those are the key elements of a Burning
Man art project.

XXIX

As puzzling as how open source projects organize themselves is why. To the casual

outside observer, it appears that open source developers spend enormous amounts of

time developing software that, in the end, they are simply going to give away with

out the prospect of compensation in return. While open source certainly has an

altruistic side, altruism is neither the only nor the most important motivation.

First, one must realize that many open source projects started out of a developer s

desire to solve an immediate problem. Linux was born of Linus Torvalds desire to

have a development platform on his PC at home. Apache came together from a group
of people who had been relying on the NCSC web server and wanted to continue its

development after NCSC stopped maintaining it.

Read Sonali Shah s essay, and you ll understand that the pattern here extends far

beyond software development. Many consumer communities have come together

collaboratively to innovate the products they consume, often when producers fail to

produce innovation on their own. Software companies created just such a stagnant

environment, out of which Linux and the rest of open source software was born. In

this sense, the initial catalyst was quite selfish: developers wanted the software that

companies were unwilling or unable to produce, so open source developers created it

to "scratch their own itches."

What started from largely selfish motivations has evolved into something quite com

plex. In Steve Weber s essay, we get a clear analysis of just how complex the gover

nance structures and processes of this community have become, as well as an intrigu

ing view of where these enabling governance structures might foster collaborative

communities in other endeavors. Andrew Hessel provides in his essay a very tangi

ble example of where open source ideas are taking hold in an entirely new realm.

Lurking in the background, though, is still a question of motivation. If the inspiration

for Linux was a selfish one, why make the choice to give the result away, and further

more to do so under open source terms? How does selfishness become altruism?

The apparent paradox rests on the assumption that acts of charity necessarily con

flict with acts of self-interest. From the point of view of a modern market economy, it

often appears that charity and self-interest do conflict. What drives the open source

developer, however, is clearly self-interest even if it is based on an older notion of

self-interest not easily captured by modern market economics.

The answer to the paradox lies in the reputation game played within the open source

community. After all, monetary compensation is only a means to an end; it is a

means of providing survival resources. Yet monetary compensation is not the only

means to that end. While open source luminaries such as Linus Torvalds and Brian

Behlendorf may not have the personal wealth of fortunate dot-commers, neither will

ever lack for gainful employment. They have sufficient reputations based on their

open source accomplishments to always be able to earn a living from their expertise.

XXX

Consider another fact: the largest age group among open source hackers is college

students and graduate students: those under 25 for whom gainful employment is not

an immediate issue, but one that certainly looms in their thoughts and plans. Because

they are students, we can assume that they have the immediate survival resources

needed for one to become a student in the first place. However, we can also assume

that those survival resources are finite. Securing future survival resources is very

much a part of the agenda of a student, indeed one of the main reasons for becom

ing a student in the first place. While a degree may provide a measure of that future

security, a degree is not the exclusive means to that end: reputation as a creator of

good code may provide that future security as well as or better than a degree.

Once this separation is made between monetary compensation and survival

resources, we can see that there are historical precedents for this kind of behavior,

and that there is a social model that loosely fits that of open source hacker culture. In

Western civilization, we can look to medieval Europe, when nomadic groups like the

Franks and the Vikings had settled into the agrarian-based feudal system. The mature

feudal system of the 13th and 14th centuries has some interesting and instructive

social structures; we ll focus on the concept of chivalry.

The good knight adhered to a code of behavior that transcended the laws of any par

ticular kingdom and encouraged an attitude with some similarities to the attitude of

today s hacker: a knight should be humble and should regard himself at the service

of others, yet he would be judged by his prowess at his trade and would succeed to

the extent that he could spread the reputation of his prowess.

Behind shield and visor, and upon adopting a particular set of heraldic emblems, a

knight took on a kind of persona, creating a public identity that might be quite dif

ferent from his private identity. There were regular events for testing and publicizing

one s prowess at arms, such as the tournament or the hunt. There were orders of

knighthood again, often transcending the boundaries of kingdoms that would

certify one s prowess. To belong to such an order was an honor; to be of sufficient

repute to be able to found an order and have other knights flock to it, was perhaps

the greatest measure of success in the chivalric reputation game.

While a knight was pan of the nobility, knighthood was a terrible burden financially. A
suit of armor cost, relative to the medieval standard of living, the equivalent of a brand-

new Mercedes today. Horses were expensive, and a knight was expected to have sev

eral. In addition, a knight had to maintain an entourage of squires, pages, and men-at-

arms. He also officially owed 40 days of service to his feudal lord each campaign sea

son, 40 days that in reality could often drag into several months. A landed knight with

a small manor could easily spend any excess capital just to maintain his position; a

landless knight, or knight errant, would likely live in perpetual debt.

Introduction
*
* xxxi

What motivation, then, would a young man in the Middle Ages have to aspire to

knighthood? Did one live according to the code of chivalry out of pure selflessness,

and a desire to serve others? Or was there some more pragmatic force at work? To a

knight of repute, money was not really important. His lord, or anyone else interested

in retaining his services, would see that his needs were met, that he had survival

resources. To flourish, a skilled squire aspiring to knighthood need only hone his

skills and act to establish and further his reputation.

This attitude and this kind of behavior seem quite similar to that of the young stu

dent who is an aspiring hacker. While academia, and academic computer science, is

a reputation game of its own, what is fascinating about computer science is that there

is a large body of practitioners that refuse to play this particular reputation game. To

this latter group, an education really is just a means to an end, and the end is to

develop the skills necessary to create good code. Some may go far enough to pick up
a university degree, but many do not, and the degree is clearly secondary to the abil

ity to code. In other words, one can build a reputation without having to acquire the

academic pedigree. It is not simply a distaste for academia that fosters this kind of

behavior. The hacker who is more interested in picking up skills than in picking up a

degree is often the same hacker who is unwilling to be tied down to a steady job,

preferring to move from assignment to assignment as a freelancer and consultant.

These are the knights errant of the open source movement.

In reality, the medieval knight errant was essentially a mercenary, hardly the noble

figure portrayed by Malory or Chaucer. The fact that these soldiers were mercenaries

made chivalry no less important. A mercenary captain had to be trustworthy; his

word of honor alone was a binding contract. Otherwise, he simply was not employ
able. These men lived by the chivalric code. What they found was that that code

alone assured them survival resources. A skilled and honorable mercenary captain

was never without employment and never lacked for resources.

Chivalry and pragmatism are not conflicting goals, but that pragmatism can indeed

be served by chivalry. The mercenary captain lacked money, land, and all other tan

gible resources. He had only one form of collateral: his reputation. That reputation

could be maintained only if his behavior was seen to be genuinely honorable. Chiv

alry, then, was a necessity: it was an essential ingredient in building the only avail

able collateral that could be parlayed into survival resources.

From this analogy, we can learn several lessons about today s hackers. First, the open

source gift culture need not be seen as strictly, or even predominantly, altruistic.

Pragmatism and altruism are not mutually exclusive. Today s hackers, like the

knights errant and mercenaries of old, can and do trade in the coin of reputation as a

means of achieving survival resources.

xxxn X Introduction

Second, as a culture matures, the pragmatism becomes more apparent. This was true

in the Middle Ages. In the high Middle Ages, the era of the crusades, the knight

errant made a flamboyant pretext of making a gift of his skills and services; one has

to look below the surface to see a rational exchange of skills for resources in such gift

acts. By the late Middle Ages, though honor and reputation were still essential, when

a nobleman retained the services of a mercenary captain, the transaction was explic

itly and without apology for the mutual benefit of nobleman and captain.

We see this same trend among today s hackers. While reputation alone has always

provided survival resources for some, the trend to switch the meme about their activ

ity from "Free Software" to
"Open Source" reflected a maturing shift from altruistic

pretext to honest pragmatism.

Today we see a symbiotic balance between the chivalric open source hackers and the

companies that employ them. In fact, this development is foreshadowed in the events

Eugene Kim describes in his essay, which concerns the development of the first com
mercial compilers. Even in the 1950s it was possible for a company such as IBM to see

the advantages of transforming a competitive relationship into a collaborative one.

Today a number of prominent open source developers are employed at major tech

nology teams. Novell transformed itself in a matter of months into a major player in

the enterprise open source space through the acquisition of Ximian and SuSE. Of

contributors to this volume, Jeremy Allison works for HP, and Chris DiBona works

for Google. Neither works at an open source company per se, but both have an

understanding that it is in their employer s interest that they be allowed time and

resources to continue working on open source projects. Other contributors here,

such as Ian Murdock (the "ian" of "debian"), Michael Olson, and Stephen Walli, are

involved in more purely open source business models.

Burning Man is, in some sense, a commercial operation. There is a significant admis

sion charge for the event (more than $200), and the event is run by a limited liabil

ity corporation. The corporation s main purpose, however, is to sustainably manage
the event. There is a permit to obtain from the Bureau of Land Management every

year. There is insurance for the event. There is preparation before and cleanup after

the event, as well as basic infrastructure, such as sanitation services, that must be

provided every year. Finally, there is a small paid staff responsible for everything
from event promotion and organization to informal lobbying efforts with the Depart
ment of the Interior, Washoe County, and the state of Nevada.

Once inside the gates, however, participants are forbidden from engaging in mone

tary commerce. The primary form of commerce is barter. In the spirit of the event,

barter is as much a pretext for participation as an exchange of goods. It may take the

form of a scavenger hunt, where admission to an art project requires a ticket stamped

Introduction *C xxxm

by several other art projects. It may take the form of a raid by the
"Viking Longship"

art car, which
"pillages" camps but always leaves some small gift behind. Or it may

be in the form of a quiet bar on a back street of Black Rock City that asks only some

small trinket from the day s events as the price of a drink.

Unfettered from monetary exchange, however, most denizens of Burning Man gravi

tate toward a gift economy. Acts of giving range from the mundane to the extravagant:

the accordion player who serenades those in the porta-potty line with his renditions of

AC/DC; the massage therapist volunteering her services; the water-gun brigade, spray

ing people down for a moment of cool relief from the midday sun; or the man who

brings along a week s supply of dry ice so he can serve cold ice cream every day.

One of the most ironic developments since the publication of the original Open
Sources has been the rapid adoption of open source business models by technology

companies.

In 1999, the consensus view of the business community was that giving away intel

lectual property for free was a poor basis for doing business. At that point, Michael

Olson and Sleepycat Software had been quietly pursuing their dual licensing model

for Berkeley DB for three years. Now several open source database companies are

pursuing similar models.

Sleepycat s approach is an example of the more general business dynamics at work

behind open source. One of the key effects is commoditization, discussed in different

aspects in essays by Matt Asay, Ian Murdock, and Stephen Walli. Commoditizing a

complement to one s core business serves to enhance that business. It brings down the

cost of entry for customers, thus expanding the potential market size for the core busi

ness. The key is to have a complementary core that can be monetized. Sleepycat

achieves this through dual licensing, charging for a proprietary license for customers

who are unwilling or unable to open their own source. Novell achieves this through a

hybrid business model, with a service business and a proprietary software business fur

ther up the "application stack" from its commoditized Linux business.

Commoditization is not the only benefit. Open source business models lower the

cost of both sales and marketing. The common fear with any free product is that

"you get what you pay for." With open source, however, the source code is entirely

open to inspection so that there are no hidden surprises. Further, the source code

can be freely redistributed. Several market effects result from this. First, those most

likely to avail themselves of open source are those with the greatest understanding of

its benefits namely other software developers who actually have the skill and desire

to examine source code. Second, the distribution model creates a user community of

like-minded enthusiasts without intervention or incurred marketing costs by the

XXXIV

originating company. Finally, that user base will, at some point, approach the origi

nating company with a request for additional features, services, or complementary
software. In other words, by its very nature, open source has very low marketing
costs that create an inbound sales channel of prequalified leads.

Open source software companies that exploit this dynamic can thus maintain lower

overall operating costs, consequently passing on lower prices while still maintaining

healthy profit margins. All of this accelerates the commoditization process, making a

well-established open source software product quite difficult to compete against.

Yet these very business advantages inherent in open source bring us to another

aspect of the same paradox: why is it so difficult for companies to leverage open
source as a development model, rather than as a business or marketing model? Con
sider Sleepycat s dual licensing scheme. The model works only if Sleepycat holds full

copyright to all of the software in Berkeley DB. Otherwise, it is not permitted to offer

the second, proprietary license in addition to the open source license. If it must have

all rights to the software, though, that means that the software must essentially be

developed in-house. Sleepycat does its own development instead of leveraging out

side, open source development.

Perhaps Russ Nelson offers a purer example of an open source business model, one

where he both develops open source software and leverages the open source devel

opments of others. The complimentary values Russ Nelson offers are his reputation
and his expertise, both carefully maintained over the years. The resulting business

may not be a large one, but it is one where he alone is the master of his own destiny.

* * *

Burning Man certainly has the feel of an organic, grass-roots movement. Certainly
that grass-roots element is part of the dynamic that makes the Burning Man commu
nity what it is. But simply thinking of

"grass
roots" makes it too easy to overlook

what a complex community structure Burning Man has and requires.

First, there is the structure of Black Rock City itself. Maintaining order in Black Rock

City is primarily the responsibility of the Black Rock Rangers. They describe themselves

as a "non-confrontational mediating agency" (see http://www.rangers.org). They are all vol

unteers, and they have no official authority. They pay admission like everyone else;

rangering is not a way around the admission price. Further, each ranger is required to

attend training prior to the event, and each ranger must enter the ranger program with

the sponsorship of another ranger as mentor. While the rangers occasionally call in

actual law enforcement, for the most part the rangers are accorded tremendous respect.

Black Rock City has many of the elements of any other city of 30,000. There is a

radio station, some years several. There is a DMV (Department of Mutant Vehicles);

you cannot drive around within Black Rock City or the playa beyond without regis

tering with the DMV. There is an airport; dozens of attendees routinely fly in for

xxxv

Burning Man. And of course, there is a newspaper, the Black Rock Gazette, published

six times during each Burning Man event.

Residential areas of Black Rock City have structure as well. Look at a map of Black

Rock City when you arrive at Burning Man, and you ll see a number of areas along

the inner circle marked as Theme Camps or Villages. These are areas that are both

residential and interactive, involving a large number of people working on a com

mon art project where the residential area itself is the art project.

The inner circle faces toward the Man, and beyond on the playa is the Burning Man

"gallery"
of art installations. Here is where the larger projects are constructed and the

larger group events are played out. Typically, there will be an opera and several other

stage performances. Weddings are common.

For several years, there was a project called Solaria. It was a scale model of the solar

system, where not only the distances between objects were proportional, but also the

size of those objects relative to distance was proportional. Each object was a light

source, with the sun represented by a small lamp about the size of a bowling ball. On

that scale, Pluto could be reached only by a three-mile bike ride across the playa. Not

even the Smithsonian can put on an exhibit of that scale.

No one has grasped the power of commoditization as quickly as developing nations.

This is an international arena with general concern over globalization, anxiety about

domination by American corporations, and fear of Microsoft s monopoly in particu

lar. Open source has given developing nations a bargaining chip to pressure technol

ogy companies, especially Microsoft, on price. The natural response has indeed been

a lowering of prices in countries ranging from Brazil to India.

Yet the significance of open source goes far beyond commoditization and price pres

sure. Read the essays here from Jesus M. Gonzalez-Barahona and Gregorio Robles, Alol-

ita Sharma and Robert Adkins, and Boon-Lock Yeo, Louisa Liu, and Sunil Saxena, and

you see that open source is really about controlling one s technology destiny. Outside

the United States, people find it odd that we use the same word,/ree, to mean two very

different things: with no cost or liberated. The open source community has adopted the

slogans "free as in beer" versus "free as in
speech"

to draw attention to the difference.

Commoditization is all about "free as in beer;" what developing nations care about the

most is "free as in
speech."

Open source provides greater intellectual property control than proprietary software that

one does not own. Developing nations want control over the intellectual property on

which their technology infrastructure depends. What emerges is a different sense of

ownership from the traditional market economy sense of ownership, one that speaks not

just to the motivations of policymakers in developing nations, but to the motivations of

open source developers as well. Think again of chivalry and of our feudal heritage.

xxxvi

In a feudal system, a farmer could not own land, nor the harvest from that land. Serfs

were indentured to the land and were entitled to only a portion of their harvest after

paying their taxes to the feudal overlord and landowner.

Technology workers today face an analogous form of servitude. It is almost universal

practice at technology companies to confront new employees with a hiring agree

ment that says, among other things, that any and all code and inventions created by

the employee while in the employ of the company belong to the company; all copy

rights and patents resulting from these creations must be transferred to the com

pany. Technology workers may reap the fruits of their creative labor only under

terms dictated by the company. Our modern notions of intellectual property and

ownership of it are based on this relationship: that it is fundamentally companies,

not individuals, that own intellectual property, and that individuals create new intel

lectual property primarily in the service of companies.

If open source hackers have one common attitude that ties them together into a com

munity, it is the rejection of this notion of intellectual property. The conventional out

siders view is to say that open source software is not owned. It is fear of the lack of

accountability associated with this perceived lack of ownership that makes many com

panies reluctant to deploy open source software for mission-critical functions.

In fact, this conventional view is deeply mistaken. To understand why, we must

make a distinction between
"ownership"

and
"stewardship." Ownership is something

that is fully transferable from one owner to another without loss of value. Money,
and many (though not all) material objects, are examples of entities that can be sim

ply owned. Stewardship, on the other hand, applies when something undergoes

change, when it evolves, or when it has some kind of life cycle. In this case, some

thing has value only if it is cared for in such a way as to sustain the life cycle. In an

agrarian society, animals are a prime example of something requiring stewardship.

Skills are required, and effort must be put forth, to maintain a herd. Transferring the

herd to someone who lacks those skills or is unable to put forth the effort dimin

ishes the value of the herd. In other words, only a good steward can realize the full

value of that which is stewarded.

Historically, land has been, and continues to be, at the center of contention between

these two notions of ownership. For example, Native Americans considered them

selves stewards of the land, and thus fell victim to the European notion of landown-

ership. Today the battle between environmentalists and certain corporations is over

exactly these two conflicting senses of ownership. Andrew Hessel s essay points to a

brewing conflict in these senses of ownership with the biotech industry.

In the technology sector, open source developers believe that software requires stew

ardship. The standard employment contract and the proprietary software it engen
ders preclude stewardship. Open source software, however, by its very nature

encourages stewardship. Again, the motivation here is not altruism or charity. To an

open source developer, stewarding software is the best way to see that the software

evolves and improves, and hence it s just pragmatism to take a stance toward intel

lectual property that assures that software will be stewarded.

The proof is in the longevity of open source software projects and the stewards who

tend them. Linus Torvalds is still at the head of the Linux kernel "tribe" more than a

decade after the first public release of Linux. Eric Allman has guided Sendmail for more

than 20 years. Larry Wall is still the guiding vision behind Perl, again after more than

20 years. In these and many more cases, a common core group stood behind the soft

ware for far longer than most proprietary software enjoys the benefits of a common

development team. It is this the dynamics of stewardship far more than the
"legions

of programmers" that accounts for the success of open source software.

Further, it is this dynamic of stewardship that fosters the social network around open

source software that is based on the reputation game. Having committed themselves

to what they regard as the most pragmatic approach to intellectual property, open

source hackers have then adopted the professional and social structure needed to

support that approach to intellectual property. It isn t altruism. It s chivalry, a far

subtler and more pragmatic thing.

* * *

The Burning Man event lasts for one week each year. Contained within that event is

the remarkable community of Black Rock City. Yet it would be a mistake to assume

that the community exists for only one week a year. The complex structure and intri

cate hierarchy that is the Burning Man community could not adapt, evolve, and sus

tain itself if it were not a year-round phenomenon.

That is the deeper truth not obvious to the casual observer: Burning Man is a perma

nent worldwide community whose members are connected to and engaged with each

other continuously. Art projects that are on exhibit at Burning Man will often be

shown at smaller gatherings in places such as San Francisco. Burners gather for regu

lar social events throughout the year to talk about past events and plan for next year.

When Washoe County or the Bureau of Land Management considers a change that

may affect the permit for Burning Man, word travels through the community like

wildfire, and burners show up in force to make their cases and state their views.

It s no accident that the growth of Burning Man parallels the growth of the Internet.

The Burning Man web site is an impressive knowledge archive about the event and

the community, providing a wealth of information and resources for anyone trying to

understand Burning Man and learn how to get involved. The "Jack
Rabbit

Speaks"

mailing list provides an announcement forum that goes out to the whole of the Burn

ing Man community, but there are dozens of other mailing lists that tie together

smaller communities within. Some of these are organized by geographical proximity,

XXXVIH x&gt; Introduction

but many more are organized by common interest. A theme camp will often have a

mailing list for its members. The Black Rock Rangers have their own web site, and

their own mailing lists.

What the Internet has done is to free us from the constraints of geography in terms of

whom we connect to, whom we share common interests with, and whom we form

community with. The power of intentional community is abundantly clear in the

open source movement, where developers from around the world can collaborate on

software of common interest. Yet the larger lesson is that the power of collaboration

and the power of community exhibited in open source have relatively little to do

with software development.

We begin to see the lasting significance of open source only when we see that it is

one instance of a general pattern of online, collaborative community. Even a very

physical, tangible event like Burning Man is crucially dependent on this larger sense

of community. If we look closely, we see that this pattern of collaboration is begin

ning to manifest itself in many other places beyond open source.

We see this strikingly in Eugene Kim s essay, contrasting an early example of soft

ware collaboration with the grass-roots collaboration that emerged around the

Ground Zero cleanup. We see this in the power of consumer-driven innovation that

Sonali Shah explores. We see it in the sense of community behind Slashdot,

described by Jeff Bates and Mark Stone, and the spontaneous movement that became

Groklaw, described by Pamela Jones. And we see a compelling attempt to distill the

most general patterns of these communities in Steve Weber s essay.

The simplest elements are these:

Recognizing that one has common cause with people who might otherwise have

competing or divergent interests

Acknowledging that small teams working on a component of a problem are the

only scalable way to tackle large problems

Improving solutions iteratively through a sense of stewardship, ecosystem, and

evolution, rather than a sense of property and ownership

Taken together, these principles suggest an organizational structure that is at once

novel and familiar. These intentional communities form hierarchically, but it is a hier

archy based on achievement and reputation rather than power, money, or authority.

Communication flows easily up and down the hierarchy, but decision-making flows

from the top down.
"Everyone gets a voice, but not everyone gets a vote" (see Bates and

Stone). The resulting organization is more tribal than democratic.

XXXIX

Each night when the two burners return to camp in the hours before dawn, "Reflec

tions in Sand" has changed shape. Some new pattern has been carefully raked into

the black-lit sand, and though they never see the visitors, the evidence of their pas

sage and participation is there.

The last evening is the night of the Burn. All day the Man has been laid down flat as

he is prepped. At sunset he is raised up again. While all week his arms have been

down at his side, now they are raised high above his head. This is the signal for the

ceremony to begin.

A ring of lights surrounds the Man, and the rangers walk the perimeter to ensure

everyone keeps their distance. For hours, within the ring of lights, drummers,

firedancers, and musicians perform. Pagan rituals from 1,000 years ago must not

have looked so different. When at last the Man ignites, flames shooting 50 feet or

more into the night sky, there is awed silence. Pieces begin to fall off, and he begins

to tremble, as only guy wires hold him in place. The trembling increases, and at last

the whole Man collapses into a burning mound. At that moment the crowd rushes

the center in a wild, swirling dance that brings them as close to the flames as heat

will permit.

Now when the two burners return to their camp, they find the sand has been raked

again, into one last new pattern. And something more; there, in the very center of the

little Zen garden, someone has left a bottle of water. One of them reaches in to

retrieve the bottle and pulls off the lid.

"You going to drink that?" asks the other.

"Of course. Out here, water is the most precious gift of all."

An hour later their camp is packed. The black-light-painted rocks go back with

them, the sand has been scattered, and the wooden frame and rakes have been

heaped onto their neighborhood burn pile. They drive toward the gate, and the

attendant waves them down.

"Heading out?" asks the attendant.

"Yeah, back to San Francisco," replies the driver.

"This your first time here?"

The passenger answers, "It is for me."

The attendant gives a knowing smile and waves them through. "See you next year.

Welcome to the tribe!"

XX
XX SECTION 1

Open Source:

Competition and

Evolution

In Section 1, we present essays tied directly to the history and development of open source soft

ware. These essays can be loosely grouped into three categories:

Essays on the software development process (Baker, DiBona, Allison, and Laurie)

Essays on business competition and open source (Olson, Murdock, Asay, Walli, and

Nelson)

Essays on policy issues related to open source (Seltzer; Gonzalez-Barahona;

Sharma and Adkins; Yeo, Liu, and Saxena; and Souza)

The essays on the development process provide a natural extension from the original Open Sources.

These essays explore the community and process that open source developers comprise, and explore

the subtle similarities and differences between open source and proprietary development.

With the original publication of Open Sources in 1999, the idea of an open source business model

was something of a novelty. Today, we see in these essays, that open source, both in its licensing

structure and in the commoditizing effect of its distribution model, has become a powerful tool in

the hands of businesses large and small.

One critical aspect of the business dynamics behind open source is the desire to avoid vendor

lock-in through proprietary software, and to control one s own technology destiny. While these

issues matter to businesses, they have become fundamental policy issues in Europe and develop

ing nations. Control of technology resources in the coming decades will likely matter as much as

control of natural resources has in the last century. Avoiding monopoly by a single company, or

hegemony by a single nation, has become a paramount policy objective. Increasingly, open source

is becoming the means of achieving that objective.

b CHAPTER 1

Mitchell Baker

The Mozilla Project: Past and Future

The Mozilla project was launched on March 31, 1998. On this date, the source code

for the Netscape Communicator product was made publicly available under an open
source license, the "Mozilla Organization" was founded to guide the project, and

development of the codebase began to move from a proprietary model into an open
model coupled with commercial involvement and management practices.

Of these three elements, the release of the source code is discussed in Open Sources.

In summary, the source code was prepared for public release by removing all code

that Netscape didn t have the right to license under an open source license, and then

replacing those pieces necessary for the code to compile and run. At the same time, a

new open source license the Mozilla Public License was written, reviewed, and

accepted by the open source community, including the Open Source Initiative (http://

www.opensource.org). The other two topics the story ofmozilla.org and the develop
ment of the Mozilla project are the subject of this essay. The creation of the Mozilla

Public License is generally an untold story, but it occurred during the time covered

by the original Open Sources book and isn t discussed in detail here.

Each of these three activities was a step into the unknown. Basic development princi

pals of the open source model
("running code speaks," peer review, leadership based

on technical merit) were known. But the combination of open source techniques
with an active, focused commercial management structure was uncharted territory.

The shift of authority from a commercial management structure to a separate organi
zation was new, and presented many management challenges. The development of

project management techniques and tools that could be shared by multiple commer
cial development teams and a volunteer community was new. Development of a

large, complex end-user application in the open source space was new.

Of course, the Mozilla project was not the first open source project with commercial

involvement. Cygnus, many of the Linux distributors, and Sendmail were all compa
nies involved with open source development, and the Apache project was develop

ing experience in coordinating open source development where some of the contrib

utors were paid by their employers. But none of these projects provided more than a

rough set of guidelines for how the Mozilla project might operate. The Mozilla

project was unusual, and at the time perhaps unique, in the way project leadership

interacted closely with both commercial teams (project managers, people managers,
and engineers) and individual contributors.

Not all open source projects are interested in commercial project management and

people management issues, but for us it was always a given. Today other projects are

thinking about these issues as the development and use of open source software

increase. Given our history, size, and scope, the Mozilla project remains a trendsetter in

this arena.

Founding of the Mozilla Organization: Obvious for Developers, a

Bold Step for Management

The Mozilla project originally grew out of Netscape Communications Corporation

and its Netscape Communicator product. In early 1998, the Netscape management
team made the decision to continue development of Netscape s flagship product,

Netscape Communicator, through an open source development model. At the time,

Netscape Communicator and Microsoft s Internet Explorer browser were locked in a

fierce competitive battle often referred to as the "browser wars." Netscape s goal was

to seed a broad-based development effort within the software development commu

nity to produce future browser products as a shared resource.

At its inception, the Mozilla project faced some paradoxes. First, the only people

familiar enough with the code to participate actively in its development were

Netscape employees. Those employees were still expected to work within the man

agement system and practices that Netscape had developed in its proprietary days.

There was no volunteer community. And yet, even at that early time, it was clear that

the long-term success of the project required a broad constituency of people and

companies working jointly on the project. It was not enough to have open source

code (code available under an open source license). The project needed an open

development process, and this required authority over the code s development to be

based on technical merit and distributed outside Netscape. The question was how to

get there from here.

*
C The Mozilla Project: Past and Future

One thing was clear: the success of the project depended on it being a real open

source project. In other words, the project needed to have technical legitimacy and

development decisions would need to be guided by technical considerations. This

was intuitively clear to the group of Netscape employees who were familiar with

open source, eager to help move the Mozilla code into the open source world and

who ultimately became the founding members of the Mozilla Organization. This

group made the need clear to Netscape management, which was receptive to trying

to do the right thing.

When the Mozilla project was officially launched, Netscape executive management

therefore took some bold steps. First, they officially anointed
"mozilla.org"

as the

steward of the codebase and leader of the project. I say officially because it s quite

possible that a group like mozilla.org would have developed even if Netscape hadn t

officially helped to create one. But this step was important, as it allowed mozilla.org

to focus on building the project rather than on proving the necessity of its role.

The creation of mozilla.org was a significant step that set the tenor of the project s

development. It meant that the development of the Mozilla codebase was to be

guided by something other than Netscape s own product and revenue plans, and also

that Netscape management would need to give up control. This may seem like an obvi

ous statement in an open source world, but it is one of the most difficult problems in

moving from a proprietary to an open system. It is particularly difficult when the

commercial vendor is actively trying to ship a product and the code has not yet

reached a good, solid state that can serve as the basis of that product.

Some have said that the Mozilla project was not a true open source project during this

time because Netscape employees contributed so much to the project and Netscape

management was so involved for so long. It s possible this is true. But I believe that

Netscape management lived in an intensely uncomfortable setting as control of the

project moved from their hands into those of mozilla.org. And since I personally was

the fulcrum for stresses between the project leadership and the Netscape management

team, I ll warrant that Netscape management felt it was living in a real open source

project. In 1999, Netscape Communications Corp. was acquired by America Online

(AOL). This resulted in many changes, but the relationship between mozilla.org and

the Netscape browser development group continued as before. For quite a while, we

used the term Netscape/AOL to describe the Netscape browser development group after

the AOL acquisition, and I ll use that phrase for the rest of this chapter.

The members of the Mozilla Organization are known as "mozilla.org staff." The original

members of the 1998 launch were Netscape employees who had a vision for an open
source Mozilla project and a determination to see it succeed. The most media-genie of

these founders was Jamie Zawinski, who left the project after a year. But the most con

sistent and long-term contributor has been Brendan Eich, who was a founding member

of mozilla.org and remains the technical and philosophical leader of the project to this

Founding of the Mozilla Organization: Obvious for Developers, a Bold Step for Management

day. Over time, the percentage of mozilla.org staff employed by Netscape decreased

steadily. Today, the mozilla.org staff does not have any Netscape/AOL employees.

After the Mozilla project was launched, mozilla.org staff members began the process

of changing development styles from a proprietary to an open source model. The

early steps were logistical: establish public communications channels such as mail

ing lists and newsgroups; establish a public system for viewing and tracking bugs. A
harder task was changing habits. For example, the existence of public communica

tions channels was not enough. Old habits die hard, and there was a tendency for

people to use the methods they had always used. This was complicated by the fact

that Netscape as a company still had confidential data about itself and its business

partners that couldn t go into public forums. So, it was not possible to eliminate all

private channels. Eventually we changed the names of any remaining private mailing

lists to something long and awkward that required conscious thought to use. This

gave Netscape/AOL employees a way to disseminate confidential data when neces

sary, but made public disclosure the easiest path.

Even as basic a step as public communications in an open source project can be diffi

cult for some management teams to accept. In a system that is public by default,

everyone needs to learn what information must remain confidential, and to remem

ber this while working. At first it s a big effort to work in public and some people see

it as overhead. Then as the project progresses and the public interaction provides

increasing value, the need to keep something private is seen as a burden. This is cer

tainly the case for the Mozilla project today, where the only private development
information we solicit are bugs which could have an impact on the security features

of our products. We ve set up a system for treating these bugs privately, and the sys

tem has overhead. We bear it in the security context because security is critical, but

we avoid it in other contexts.

We also set up a public bug and issue-tracking system. This is commonplace today, but

was innovative at the time. We made the bug-tracking system an open source project

under the Mozilla umbrella, and today Bugzilla is a successful project in its own right

(http://www.bugzilla.org). We also set up a continuous build system and web frontend

(http://tinderbox. mozilla.org/showbuilds.cgi). This means that we have an automated pro

cess that builds and rebuilds the software continuously on multiple platforms to see if

and when a new piece of code causes the software not to build. Then came a period of

learning to "work in the fishbowl." Some people adapt easily to having all their work vis

ible, and others struggle. Many simply walk down the hallway to talk with a buddy, and

then forget to tell everyone else. This period takes some time and effort.

Updating the Codebase

About six months into the project, it became clear that the codebase was in need of

updating. By late 1998, the inherited code was several generations old, had been

patched over and over, and actually hindered ongoing innovation. Old and fragile, it

^ C The Mozilla Project: Past and Future

looked backward toward the beginning of the Web, rather than forward to the new

technologies a modern browser would need to support. So, in late 1998, a painful deci

sion was made to rewrite the layout engine, a critical and complex core component.

This decision changed the scope of the project dramatically. The initial project was
an incremental upgrade from the Netscape Communicator 4.x product line to a pro

posed 5.x product line. Moving to the new layout engine (known as Gecko) meant
that the incremental model was gone; the Mozilla project would need to develop a

complex new layout engine and then build a new browser application on top of it.

And things got harder from there. As the new layout engine began to mature, it

became clear that other significant parts of the codebase would also need rewriting.
The development process turned out to be a lot like a remodeling project where fix

ing one problem leads to another. Then came the long, slow grind to producing

something useful (Mozilla 1.0 in June 2002) and finally something great (Mozilla

Firefox in November 2004).

During this time, many proclaimed us dead, a failure. What those people didn t see

was the passion and commitment of the contributors to the project, including the

Netscape employees. The contributors knew that they were developing good technol

ogy. They knew they had a shot at building a great browser and mail client. And they
knew it mattered. The Web matters. Browsers matter. Much of the world decided

that the days of browser innovation were over. Some mourned the loss of choice, and

many didn t realize the dangers of accessing the World Wide Web only through a

single access point. But the contributors to the Mozilla project realized both the dan

ger and the potential for something innovative. They persevered. The prominence of

Netscape often obscured the efforts and dedication of the individuals themselves.

Yes, many contributors were paid by Netscape. Of these, many contributed far

beyond the requirements of a job, doing extra work to make the product "theirs" and
to make sure they were proud of it. Meanwhile, the individual volunteers provided
critical expertise and contributions across the codebase.

During this period, almost all the code in the Mozilla browser and email client was
rewritten. The focus was a modern layout engine, and a set of technologies designed to

make the promise of cross-platform development a reality for the Web. We created a

cross-platform component model (XPCOM),a cross-platform XML-based UI language
known as XUL (pronounced zool\ a new toolkit using XUL, and a set of cross-platform

applications themselves. Developing these was a long process, but we felt that it was

important to have technology that would help us move forward. The power of these

technologies has been demonstrated through our new products: Mozilla Firefox and
Mozilla Thunderbird, in which we were able to build award-winning cross-platform

applications quickly on top of mature, preexisting infrastructure.

Founding of the Mozilla Organization: Obvious for Developers, a Bold Step for Management
.
XX

A Disciplined Methodology

Along the way, the Mozilla projects developed a highly disciplined method of distrib

uted software development. Many people think that open source development is nec

essarily chaotic. Or they wonder about the quality of the code because anyone can

create a patch and offer it for inclusion in the source base. Open source need not be

chaotic, and the Mozilla project is not. For every piece of code checked into the

Mozilla products, we track:

Who checked it in

When it was checked in (to the minute)

What problem it was trying to address

The complete history of the issue (bug) the code was trying to address

Who did the code review (often two levels of review)

Whether the next build of the software was broken on any of our main platforms

Whether the code affected our performance metrics, by platform

Build and optional log comments

A comparison with the previous version of the code.

This information is available at any time; it does not require an expert to find or

assemble the data. It is available online, in real time, through a web interface; all one

needs is a web browser (http://tinderbox.moz.illa.org/showbuilds.cgi). We do this so that

many contributors can work on the same codebase simultaneously and know what s

going on. We do this so that the source code "tree" stays healthy, and we address

problems before more new code makes them worse. We also have policies determin

ing who gets access to the CVS tree, what s required before code can be checked in,

what to do when the tree doesn t compile and run, how authority is delegated to

those with expertise, and so on.

Building an Open Source Project

The process of building software proceeded simultaneously with building a vibrant

open source project. The creation of mozilla.org had gone hand in hand with the rec

ognition that Netscape management would need to give up a great deal of control over

the development process. Now it was time to figure out how to make the transfer. I

describe in this section two of the most significant topics we addressed control over

the source code repository and control of the designated releases in some detail, for I

believe this shows how the Mozilla project came of age.

Implementing a transfer of control from Netscape management to mozilla.org caused

a number of strains. Mozilla.org staff could have proceeded in opposition to

Netscape. Indeed, we thought about it many times. However, Netscape was a large

* *
The Mozilla Project: Past and Future

and valued contributor, whose involvement and work product remained very impor

tant for the project. So, we spent a great deal of energy figuring out techniques that

addressed the concerns a commercial entity like Netscape brings to a project and

simultaneously building a strong open source community.

Having control of the source code repository may seem like an obvious requirement

for an open source project, but there were many sensitivities in our case. For exam

ple, the Mozilla project has processes to make sure that code is of good quality before

it is checked in. This is often the case in open source projects, and many contribu

tors understand that their code needs to meet project standards. However, this is not

always the case in commercial settings. Often the employment decision is what mat

ters. If someone is an employee, his code goes into the project he was hired to work

on. Instituting code review for everyone, even people employed to contribute code,

can be a surprise for new employees and for their managers. Suddenly the decision of

what code goes into the source repository is not made by managers for a particular

person through the employment process. Instead, the decision is made by engineers

who review the code itself rather than the person s credibility or employment status.

And the code review is not optional or auxiliary; code cannot be checked into the

tree until an appropriate reviewer has given formal approval.

We instituted code review as a prerequisite to check-in relatively early in the process

without too much controversy. Sometime later we implemented a second layer of review

which we ended up calling "super-review." Super-review is an
"integration review" or

"plumbing review." Does the code conform to coding guidelines? Does it use the some

what tricky XPCOM in appropriate places and not elsewhere? Does it conform to the

overall architectural goals? Does it avoid needlessly diminishing modularity?

We instituted the super-review requirement because we felt we had to. The Mozilla

codebase is large and complex, and we were worried about overall code quality. We
needed to increase our confidence that the code we were accepting into the tree would

solve the immediate problem, and still leave us enough flexibility for future develop

ment. Implementing the super-review was very painful for everyone involved. It was

painful for the identified super-reviewers. Being a super-reviewer is actually a lousy

job who wants to review yet more code instead of writing it oneself? And of course,

the super-reviewers were well regarded and had plenty of work to do themselves. They
took on the super-review job not because they wanted to, but because they believed it

was important to making Mozilla the project we wanted it to be. Super-review was also

painful for the contributing engineers. Adding another layer of review to the pre-check-

in requirements was seen as
"yet

more bureaucracy" by some.

There were many requests for absolute, guaranteed turnaround times for super-

review. Engineers and managers complained they could not schedule work accu

rately due to the unknown lags caused by waiting for super-review. And yet, the

super-reviewers had to balance review of code with writing their own. And since they

Founding of the Mozilla Organization: Obvious for Developers, a Bold Step for Management * J 3

were well regarded, their code was acutely needed. I was unwilling to agree to rigid

turnaround times for super-review, believing that doing so would put the work of

key contributors at risk. We eventually agreed on a timeframe for an initial response

from the super-reviewer, which would contain some estimated time for full review.

Another issue was determining who has "write-access" to the source code repository.

This was extremely sensitive. In a commercial setting, it is often the case that when

people are hired they are given access to the part of the source code repository to

which they are expected to contribute. In open source settings, one typically earns

access by making valuable contributions. Moving the open source standard of "earn the

right to touch the tree" to employees who need to contribute code to do their job can

be difficult. In particular, the rationale for why this is necessary can be hard to explain

in a commercial setting when all the code an employee writes must be reviewed and

super-reviewed before it can be checked in. The question comes up: assume Employee
X is hired. She writes code, and it passes review and super-review. Why on earth can

that employee not go through the mechanical task of actually checking the code in? I

was never able to provide a complete answer to this question. I know that open source

projects regularly vet people before allowing access to the source code repository. And I

know it would be very odd for a management chain in a company to make the deci

sion about CVS access. So it s clear that this "is just not done." But I was not able to

explain clearly how someone could do damage by having CVS access if all of her code

was reviewed and approved before check-in, even though the technical leadership of

the project felt very strongly about this. The idea of automatic access for employees had

an emotional response because open source projects rely on peer review and technical

leadership, and I shared this. But the key engineers were adamant that the quality of

the code would suffer through automatic access, even though our pre-check-in code

review requirements are quite stringent.

It was an awkward setting to institute a policy for which I couldn t give a crisp reply

to the various management teams affected. (I ve been responsible for policy for

mozilla.org since 1999, so it was my job to write the policy, describe it to manage

ment, and address the concerns and complaints that might come up.) And the possi

bility existed that management groups would be surprised, distressed, or outraged

that such a policy would be instituted without a clear answer as to why the code

quality wasn t adequately protected. Nevertheless, we instituted this policy in 2001.

A second area where shifting control to mozilla.org was highly sensitive concerned

control of the milestone releases. By "owning the releases," I mean several things:

first, defining and implementing a planned milestone schedule; second, defining and

implementing a process for getting a release into shipping condition; and finally,

identifying and shipping the release.

When the Mozilla project was launched, the planning and release schedule was deter

mined and implemented by Netscape employees contributing to the project, but not

10 x* The Mozilla Project: Past and Future

directly by mozilla.org staff. We worked on changing this for quite some time before

we had proven ourselves trustworthy enough for Netscape to give up control. This may
seem laughable how can a so-called

"open
source" project not control its own

releases? But it s important to remember that Netscape was under enormous pressure

to release a product, and giving up control of the process by which releases are made is

extremely uncomfortable. Mozilla.org was new and unproven. And of course, manag

ing a software project with hundreds of people working on it is not easy in any setting.

Control of these aspects moved formally from the Netscape management to the

mozilla.org staff following the release of the Netscape 6 browser. This shift had been

discussed for some time but still involved a leap of faith for those who had previ

ously exercised decision-making power.

This was a tempestuous time; mozilla.org staff had influence, but not control. We

thought many times about whether we needed to create a fork in order to affect such

a shift in control. Each time, the mozilla.org staff decided that Netscape s contribu

tions were far too important to the project and outweighed the desire for open source

purity or credibility. I suspect that the Netscape management team must have had

similar discussions, weighing a fork and the ability to manage their releases as they

felt best with the value gained from the open source project. In the end, we all hung
in and mozilla.org staff became the official keeper of our releases after Netscape 6.

Owning our releases did not mean that we ignored Netscape. Netscape remained the

largest single contributor, and its pool of talented and dedicated engineers was bog

gling. Netscape was also the largest single distributor of Mozilla-based products.

Managing the project without taking Netscape s needs into account would have been

stupid. By this time, Netscape didn t exercise control as it once had, but its leader

ship role in the project was greater than some might have liked. Mozilla.org staff con

tinued to hear from the community that we were Netscape stooges and there wasn t a

"real" open source project. However, to my mind, Netscape s role was now deter

mined by classic open source principles: leadership and influence through the qual

ity of one s contribution. Of course, this involves an acceptance of the role of a cor

porate entity in an open source project, which made some uncomfortable.

Mozilla.org was able to own our releases well, in part because we had developed an

active, effective quality assurance (QA) community. Over the years, I ve learned how
few people intuitively grasp the importance of the QA effort (and I suspect, how

important QA will be to other projects of similar scope). Both of our major efforts

web browsing and email live in an extremely complex world. The Web is very

diverse, and people use our software in a boggling array of environments and in

wildly different ways. Hiring a QA team as full-time testers is part of a solution, but it

is not the complete answer. I m becoming more and more convinced that it may well

be impossible to hire a QA team big enough and diverse enough to do thorough test

ing of a product like a web browser.

Founding of the Mozilla Organization: Obvious for Developers, a Bold Step for Management
*

11

By 1999, it had become apparent that an active community of people was interested in

contributing to our testing and QA effort. Christine Beagle joined us to lead an effort at

mozilla.org to make this group cohesive, figure out ways to give the group some author

ity, and encourage them to step forward. The response to a bit of attention and apprecia

tion directed at this nascent community was astounding. One mark of success is that

shortly thereafter, we hired one of the more active and organized of these folks as our

community QA lead. This person was Asa Dotzler, who has been a key figure in the

project ever since, still coordinates QA activities, and is extremely active in managing

our release process. With Asa s coordination, we began to see a set of people doing more

organized testing of our products. This provided enormous value. The testers also did

things such as look at all the bugs assigned to a particular engineer, verify that the bugs

were legitimate, check to see if the bug existed on all platforms, create test cases, and

then verify fixes across our main platforms. These efforts saved enormous amounts of

time for the engineers trying to write the code to fix the bugs. I ve learned that this type

of work often gets little respect, but we value it highly and find these contributors to be

extremely important to our project. Many of these efforts were coordinated through

mozillaZine, an independent webzine dedicated to the Mozilla project that was founded

by Chris Nelson in September 1998 (http://www.mozillazine.org).

Massive community testing remains important today. We provide Release Candi

dates for our major product releases precisely so we can get 50,000-100,000 down

loads from our key community and get a good reach on quality.

Young Adulthood the Mozilla Foundation

The idea of an independent legal organization to guide the Mozilla project had been

discussed when the project was first launched in 1998. However, it was decided that

the time was not quite right. At the time, there were no models for setting up such an

organization and figuring out how it would be governed, who would participate, and

so on. There was enough unknown and far too much work in getting the code ready,

the project launched, and a browser developed to take on things we didn t abso

lutely have to do. Eventually we decided that the right time to create an independent

Mozilla Foundation would be when a critical mass of people was interested in sup

porting a foundation. That critical mass would need to include a significant set of

volunteers and a set of companies interested enough to fund browser developer and

distribute Mozilla-based technology.

That critical mass began to develop with the release of Mozilla 1.0. Mozilla 1.0

showed that we could produce a good product, that the Mozilla releases where deter

mined by Mozilla rather than by Netscape, and that the project had a positive future.

At least one critical corporate participant came to us and told us that 1.0 proved our

viability and that they were very interested in helping form and support an indepen

dent Mozilla Foundation.

12 X The Mozilla Project: Past and Future

Following the release of Mozilla 1.0, I spent a fair amount of time thinking about

what an independent Mozilla Foundation would look like, how we might put it

together, how many employees we would need, which companies would likely pro
vide support, and how to finance employees in the early years. I had help from a set

of mozilla.org staff members. In addition, I had the good fortune of hooking up with

Mitch Kapor, who had recently joined the open source world with the launch of the

Open Source Applications Foundation (http://www.osa/oundation.org). Mitch was an

immense help in thinking through various possible structures for the Mozilla Foun

dation and is an unsung hero in getting the Mozilla Foundation launched.

In the spring of 2003, the stars aligned. Mozilla.org staff was ready, the project had

developed a critical mass, and we had some corporate support. In addtion, AOL decided

it was ready to help spin out the Mozilla project. This was an important element for

mozilla.org staff. Of course, we could have launched a project without AOL s support
that s the nature of open source but the mozilla.org staff felt that AOL s support was

important to the launch of an independent Mozilla project. We hoped that the use of the

Mozilla trademarks would be transferred to a new organization, along with a set of

machines. We wanted to be able to hire a group of people, some of whom were current

AOL employees, without bad feelings. We felt it was very important to the project s sta

bility to have a smooth transition from AOL to a successor. We also knew we needed to

hire people to keep the project running well, and that it would take us time to find

ongoing funding sources. So, the seed funding that AOL provided was another critical

factor. Through July, I worked to reach agreement with AOL on how the Mozilla Foun
dation would be launched. Once again, Mitch Kapor provided invaluable assistance in

helping to get the arrangements with AOL worked out.

On July 14, 2003, the Mozilla Foundation was launched as an independent non

profit organization. AOL contributed $2 million in seed funding for the Mozilla

trademarks, the Mozilla Public License, the machines we were using to host the web
site and other infrastructure, and the efforts of a transition team to help create a

smooth handoff. We knew we had some additional funding from IBM and Sun, and
Mitch Kapor donated $150,000 for each of the first two years. Based on this, Bren

dan Eich and I decided, with the help of Chris Hoffman and Mitch, to aim for an ini

tial group of 10 employees.

The initial group was divided among (i) those focused on the projectwide resources

(technical leadership, infrastructure, tools, web site management, builds, releases,

QA), (ii) those focused on the codebase itself (Firefox, Thunderbird, Gecko, the

DOM, and JavaScript) and (iii) a couple of people focused on all the other things the

project and the Mozilla Foundation needed to be successful, including relationships
with commercial contributors and other organizations, legal structure, trademarks,

finances, and so on. Mitch Kapor offered to extend his organization for providing
back-office services payroll, benefits, accounting, donation processing, and human

Young Adulthood the Mozilla Foundation * C 13

resources to the Mozilla Foundation on very gracious terms, which has been a great

boon. Securing high-quality services in these areas for the Mozilla Foundation had

always been of concern to me and this has been a phenomenal solution for us.

This resulted in a group that was small for the scope of the project, but still big for a

nonprofit open source project to support. We chose this route because we believed that

the project was unlikely to reach its potential without a core group of at least this size.

We felt this was the minimum size for critical mass for several reasons, including these:

The World Wide Web isn t finished.

It changes all the time. New content types develop, new technologies develop,

and new possibilities emerge. If the browser doesn t continue to develop, the

consumer s ability to enjoy these enhancements stagnates.

Browsers and email clients aren t done yet.

There s a whole range of innovative ideas that interact with browsers and email

clients. For example, RSS readers can be nicely integrated with both browsers

and email. In addition, the underlying components on which the actual end-user

applications are built require constant development.

Speed matters.

We need good Internet clients now. Having a core set of people able to devote

full-time attention to this makes a big difference in accomplishing things quickly.

The size and scope of the project requires it.

Just keeping track of what s going on in the Mozilla project takes time. About 80

people actively check into the CVS repository each month, and of course, many
more active participants don t have CVS access. We also have a high level of

involvement with commercial entities and with Mozilla development teams at com

mercial entities. Providing the technical leadership and coordination for this large a

group is a big job, even with a set of full-time employees. Doing so without a set of

people available full time (or more than full time) would be beyond daunting.

The founding in July was followed by a hectic startup period through the fall. We
assembled the team of employees. We found office space at an affordable rate, thanks

again to friends of the Mozilla project who extended a helping hand. We moved our

equipment from AOL to our co-location facility and our offices. We knew it was

important that enterprises and other institutions got a good picture of the Mozilla

Foundation and grew confident that we are not a naive, flaky group, so we spent a

chunk of time talking with these groups.

We decided that a serious focus on the end user needed to be added to our traditional

focus on developers. Product development continued at a fast clip through this period.

14 X The Mozilla Project: Past and Future

Firefox and Thunderbird

As if forming the Foundation, moving employees, and establishing and supporting

ourselves wasn t enough, we also began a determined transition from the application

known as Mozilla or the Mozilla Application Suite, or by its codename, Seamonkey,

to our new products: Mozilla Firefox and Mozilla Thunderbird.

We knew that our future lay with the new applications. The integrated Mozilla

Application Suite is a fine product that many love. But the integration caused diffi

culties, the UI had been built by accretion and had been added to over the years, and

we knew we wanted updated, standalone browsing and mail applications. Given our

limited resources, we had to place a bet, and we did.

The Mozilla Foundation hired the lead Firefox and Thunderbird developers, Ben

Goodger and Scott McGregor. We talked with Ben and Scott about providing assis

tance to the community of people working on the Mozilla Application Suite. We con

tinued with our releases of the Mozilla Application Suite, including improvements to

the core components, performance, stability, and security, and coordinating feature

work done by our community. But we did not hire people focused on the Mozilla

Application Suite.

Both Firefox and Thunderbird were in the early stages of development when we

made this decision. Indeed, Thunderbird had not even seen its 0.1 release when the

Foundation was launched. Despite this, we knew that the then-current state of Thun

derbird could probably have supported an 0.1 or 0.2, or maybe even an 0.3 label.

This was borne out when we were contacted over the summer by a Fortune 100

company wanting information about Thunderbird. The company had already done a

significant amount of due diligence and had realized that Thunderbird was the best

option. They wondered if the Foundation would be interested in speeding develop

ment of certain enterprise features if we had some additional funding to do so. As a

result, Thunderbird has had a rich set of enterprise features from its early days. It

lacks an integrated calendar, but the Mozilla calendar project was reinvigorated and

an integrated calendar project launched in the fall of 2004.

Firefox was further along the development path, but still quite young. It wasn t even

called Firefox at that time; it was called Firebird, the second of two early names

which we abandoned due to trademark issues. The application-eventually-known-as-

Firefox was at the 0.5 stage, quite usable, but not a polished end-user application.

The development goal had always been a strict focus on the end-user experience

above all else. This continued, and Bart Decrem drove the end-user focus through

out all aspects of the Foundation s operations. Firefox began to be noticed in 2004

with the 0.6 release. It quickly began to capture the interest of much of our devel

oper community. There were still millions of contented users of the Mozilla Applica

tion Suite, but the momentum had clearly begun shifting to Firefox.

Young Adulthood the Mozilla Foundation * J 15

In February 2004, we found a public posting by a visual designer named Steve Gar-

rity, describing what Firefox needed for its icons, logos, and visual identity in gen
eral. The content of the post was excellent. Better yet, Steve seemed to have both

knowledge of and an interest in tackling these problems, instead of simply complain
ing or pointing out problems. We asked him if he d like to take the lead for a bit and
show us what could be done. He said yes, and the Visual Identity Team was created.

Both Firefox and Thunderbird took a giant step toward becoming sophisticated, pol
ished end-user applications. By the 0.8 release of Firefox in June 2004, the momen
tum for Firefox was growing dramatically. Firefox was already an impressive prod
uct, offering features new to most users.

In addition, the Internet experience had become extremely painful. Malicious actors

were everywhere. The Web was infested with viruses and security exploits, seemingly
uncontrollable pop-up windows appeared almost everywhere, and distracting, band

width-chewing ads appeared long before desired web content. The browser, a piece of

software many had come to take for granted, suddenly mattered. The browser is the

mechanism through which one s computer one s hard drive with its critical and pri
vate data-connects to the wild, wild world of the Web. A modem, high-quality
browser is necessary to keep this connection from being increasingly painful and even

dangerous. The Mozilla Foundation had a great browser in Mozilla Firefox, and people
began to notice. By mid-2004 we began to see that the types of people who were inter

ested in Mozilla Firefox were expanding. We began getting messages from people who
clearly were neither early adopters nor even particularly savvy. So, we knew we were

making a difference. And we knew that the difference was important enough for more

people than ever before to pay attention. People who tned Firefox loved it. Around the

0.9 timeframe Qune 2004), a groundswell began building.

The summer of 2004 was an even more painful time on the Web. A series of viruses

and security issues caused enormous inconvenience and concern. Internet Explorer was
a vector for many attacks. These problems caused consumers to pay more attention to

their browser. They helped people realize why an alternative browser is so important to

the health of the Internet and one s ability to interact comfortably with the Web. Secu

rity is a very difficult problem. A browser must be open to the content of the Web
that s the whole point. At the same time, it can t be too open. A browser needs to have a

series of defenses to help filter out bad content. No browser can be perfect, and that

includes Firefox. We know that we will be making security changes and improvements
in our products on a continual basis, and we hope that others do as well.

We saw significant adoption of Firefox 0.9 through the summer and fall of 2004
almost 8 million people came to get a product that hadn t reached its 1.0 status yet.
Mozilla Thunderbird adoption was also proceeding well, though not at the same fan

tastic rates. On the marketing side, Spread Firefox was launched in September 2004.
This was a community marketing effort, perhaps the first of its kind. We knew that

IB
* *

The Mozilla Project: Past and Future

the great strength of the Mozilla project is the community of people dedicated to

making it successful. We also knew that we would not have a traditional "market

ing"
or "PR" effort, spending large amounts of money on media events. And the mail

we were receiving made it clear that people were excited about Firefox and wanted to

help their friends and family switch.

The result was www.spreadfirefox.com, the home of a fervent evangelism community
focused on increasing Firefox adoption. The most famous Spread Firefox campaign
to date has been the New York Times campaign, which was proposed and initiated by
a community member. This started out as a 10-day campaign to get 2,500 people to

contribute funds to buy a full page ad in the New York Times supporting Firefox.

Ten days was the wrong timeframe 2,500 people signed up in the first two days.

We kept the campaign open for 10 days anyway and ended up with 10,000 choos

ing to participate. We had promised that contributors names would be in the ad and

would be legible, so we enlarged the ad and made it a full two-page ad. It ran on

December 16, 2004. A while later I came to work to find two young men standing
outside our door. The door is glass and we had taped the NYT ad to the door so that

it was visible from the outside. The two young men looked lost, but one wore a Fire-

fox T-shirt. So, as I reached the door to go in, I asked, "Can I help you find some

thing?"
The men were rather shy, looking at their feet and mumbling, "We just

wanted to see the Mozilla Foundation. We re only in town for a few days and had to

see it." Then one of them straightened up, looked me in the eye, jabbed his finger at

the New York Times ad, and said proudly, "And there s my name, right there!" Some
times I think people believe I m exaggerating when I describe how passionate con

sumers are after they ve tried Firefox, but it s actually hard to overstate the excite

ment that Firefox has generated.

Getting Firefox and Thunderbird to a 1.0 status and shipped was a very intense

period. We knew we had great products in the works, but we had to finish them. We
also had to get a set of related activities completed. These included revamping our

web site, developing our communications plan, working with the Spread Firefox

community, improving our localization process and working with the various local

ization communities, figuring out our search relationships, working with our affili

ates Mozilla Europe and Mozilla Japan on the international aspects of the launch,
and so on. The ferocious dedication of everyone involved was required. I cannot

stress enough the commitment of the Mozilla community. On Sunday, November 7,

I logged onto IRC at about 8:00 A.M.., which is early for me and for most of the

Mountain View-based staff. I was bombarded with questions from our localization

communities in Europe and Asia. Some were up early, many were up very, very late,

and all were trying to figure out how to manage their schedules over the next 48
hours to be available whenever needed to get their localized versions finished,

approved and shipped as part of the 1.0 release.

Young Adulthood the Mozilla Foundation

Mozilla Firefox 1.0 and Mozilla Thunderbird 1.0 were released on November 9, 2004.

To say they have been well received is an understatement. Firefox 1.0 was downloaded

from our mirror site about 2 million times in the first two days alone, and has plunged

on at an average rate of almost 250,000 downloads per day since then. As of mid-April

2005, the number of downloads that we can track is very close to 50 million. On the

usage side, Firefox has gained worldwide market share at a rate of nearly 1% per

month from November to April. As of April 2005, surveys are beginning to show

Mozilla browsers at or above 10% market share. Among technically focused sites, the

market share of Mozilla products ranges up to much higher numbers.

It s extremely difficult to gain this sort of market share on the desktop in the face of a

competitive product that people get when they buy a computer. The fact that Mozilla

Firefox has done so is a reflection of a great product, a huge need, a fervent commu

nity, and the power of the Internet.

Many people have wondered whether open source development can produce great

end-user applications. One school of thought says that open source developers can

produce infrastructure and products that other developers like, but not applications

aimed at the general end user. Mozilla Firefox and Thunderbird demonstrate that

open source software can indeed produce great end-user products. I believe that we

are only at the beginning, and we will see a range of innovative end-user products

come from the open source world in the coming years.

The Future

The mission of the Mozilla project is to promote choice and innovation on the Web

by creating great end-user offerings. We focus on innovation because the Web is still

young we ve seen only the beginnings of its potential. That potential can be stifled

if we don t have innovative work done on the client side.

We focus on choice because this allows people to have greater control over their

Internet experience. This control over our life on the Web increases in importance

each year, as more and more critical functions such as banking, health care, insur

ance, and commerce are done over the Web. A monoculture is rarely a healthy ecol

ogy. A single effective choice in browsers and email clients is dangerous, both to con

sumers and to the health of the Web itself.

Firefox in particular has shown that consumers will pay attention to a product that

provides an alternative, and that the Mozilla project can create such a product. We
have a number of challenges ahead of us. We need to continue to release products

that people love. We have a set of responsibilities that come with the user base,

adoption rate, and increased visibility of the project. Conditions will change, and we

will need to adapt. These are challenges, but certainly no greater than those we have

faced to date. These are the challenges that result from the project s achievements.

18 X The Mozilla Project: Past and Future

We have great talent, a powerful and creative community, a well-earned place in the

Internet ecosystem, a growing user base, and, at long last, a legal home for the

Mozilla project in the Mozilla Foundation.

As we go forward, there is no change in the mission of the project. Our basic

approach of combining open source DNA with involvement by commercial entities

will continue. The Mozilla Foundation has grown some and may grow some more,

and we expect to continue working closely with a set of companies that are inter

ested in developing and distributing Mozilla technology. The increasing acceptance

of open source software by the commercial world opens up greater possibilities for

collaboration. The emergence of web-based services provided through the browser

also encourages business models for the service provider other than charging for each

copy of software provided. This allows more entities to contribute to our project.

Our focus on distributed development, technical excellence, and welcoming new

participants will continue. The need for a vibrant, creative community of people

focused on the Web will not change.

I expect the Mozilla project will continue to be a trendsetter in a number of arenas:

development of open source end-user products, combining volunteer and commer

cial activity in an open source project, maintaining a critical mass of people as

employees of the Mozilla Foundation, and funding that set of employees plus com

munity marketing and adoption programs. We aren t the only ones doing these

things, and we continue to learn and benefit enormously from the open source

projects. We hope to contribute ever more in return.

19

b CHAPTER 2

Chris DiBona

Open Source and Proprietary

Software Development

In this chapter, I present a perspective on the similarities, differences, and interac

tions between open source and proprietary software development.

Proprietary Versus Open Source?

Before you go any further, throw off any notion that the proprietary developer is some

how a different person from the open source developer. It is uncommon for a member
of the open source developer community to do only open source for a living. Only the

most prominent, or loaded, members of the open source community come close to

having this kind of freedom. It is indeed rare to find a developer who develops only
with proprietary tools and libraries. Even Visual C++ and C# developers benefit from a

great variety of code and libraries that are free for use in their programs.
1

My career has focused on open source development for the last 10 years, and I m
constantly pleasantly surprised by how open source development and proprietary
resemble each other. I believe this is because proprietary developers are educated by
the adventures of their slightly crazy open source cousins, but I also know that open
source developers have learned just as much from proprietary developers.

1 Traditionally, one difference between open source and proprietary development teams has been
that open source teams are, in general, geographically quite dispersed. However, in this age of

outsourced, offshored, and distributed development, even proprietary development has
become highly dispersed geographically.

Don t read this as an attempt to muddy the difference between proprietary and open

source programs. They are different, sometimes very much so. However, they come

from the same people, and they re using a lot of the same methods and tools. It is the

licenses and the ideals behind open source programs that make them remarkable,

different, and revolutionary.

The Example Culture

A lot of people, when talking about open source software development, say that open

source developers enjoy a great productivity gain from code reuse. This is true, but

in my experience all developers, not just open source developers, benefit from the

existence of free-of-charge standard libraries and code snippets. For decades, propri

etary developers have had a great variety of prepackaged libraries to choose from, but

these proprietary libraries haven t taken root in the same way that freely usable, open

libraries have. 2

Code reuse? Knowledge reuse!

In Linus Torvalds essay from the first Open Sources, he talked about how the rise of

open code was delivering on the promise of reuse touted by proponents of the Java

programming language specifically and object-oriented programming in general.

That said, it has been my experience that there is a point at which software develop

ers will go out of their way to avoid reusing code from other projects. In some shops,

they call it "not invented here" (NIH) syndrome, and some companies are famous for

it. But even those shops use standard kernels, libraries, and compilers. The real diffi

culty here is in figuring out where the NIH line lies. Although the answer is different

for every single programmer and team, all still can (and still do) learn from the open

code out there, which is a unique advantage of open code. While both open and pro

prietary code can be reused in a wide range of circumstances, open code enables

something further: knowledge reuse. By examining the code itself, the developer can

learn how a particular problem is solved, and often how that solution is an instance

of a general solution type. It is this kind of reuse that Linus applauded and that the

NIH developer misses.

Then why not simply use other people s code? There are a number of factors to con

sider before code is incorporated, and these must be understood before one can

understand the role that Free Software has had in development.

This will likely inspire many to cite their favorite commercial library. A full survey of libraries,

both commercial and open source, would be required to validate this statement properly. This

is an educated assumption on my part, as when commercial libraries manage to gain any son of

prominence, open source developers tend to fill the gap, thus overshadowing the commercial

project.

22 * C Open Source and Proprietary Software Development

Speed of development

There are very real barriers to using other people s code. You have to examine how to

interface with said code, and you need to review the code to make sure it meets your

standards for security, license, style, and correctness. You also need to integrate it

into your version control and build system.

None of these problems is insurmountable, but they have to be worth surmounting.

To wit: if all I need is a routine to do something simple, such as iterate through an

array of numbers and perform some simple operation on them, using someone else s

software would be a waste of time.

When developing, I like to use large libraries only when I either don t want to deal

with a technology, or I don t fully understand it and don t feel qualified to imple

ment it. For a recent project, I was pulling newsfeeds from weblogs and performing a

kind of natural English language processing on it. I thought that using a tool called a

"stemmer" to normalize the data would make my later analysis more accurate.

Implementing the routines to download and process feeds could have taken a month

or two, and this is exactly the kind of development I don t like to do. To properly

implement a stemmer, I d likely have to get my graduate degree and then write it

which would impact my deadline a bit so I downloaded programmer-friendly
libraries that did each of these tasks. The stemmer was available under the Berkeley

Software License, and the feed parser was available under the Python Software

License, both of which are very easy to deal with and do not require any onerous

post-incorporation duties. I was thus able to save time and have better code.

That said, some things I m very interested in developing myself. Since I was doing
this project as an excuse to learn a natural-language processing algorithm, which was

interesting to me, I wanted to write that part of the program myself. I was (and am)
also fascinated with a problem I think I ll have in storing the results such that I can

quickly retrieve them from a database. I haven t solved that problem as of this writ

ing, but I don t necessarily want to use other people s code for that. I have read some

code and examples in textbooks and online that will help me with the former, but

the storage problem is mine, for now.

This gives you an idea where the line was for me in this particular project, but oth

ers have the same reticence for other, subtler reasons.

A particularly difficult codebase

What makes software difficult to add to your code? Sometimes the code is simply in

the wrong language. Maybe you are using Perl and want to tie some code into a C or

Python module. That s not always so easy. Maybe the code was really developed on

only one platform say, an Intel machine and you want it to work on your iBook,

which runs on a PowerPC processor.

Proprietary Versus Open Source? X 23

The problems with using other people s code can be legion. Maybe their routines

were implemented assuming a machine with a lot of memory or processor cache,

making it perform poorly or, worse, unpredictably,
3 on your target platform. Maybe

the software was developed for an earlier version of your programming language, so

a lot of features you would have implemented with a standard library call are instead

implemented from scratch, thus reducing future maintainability.

Problems arise with canned libraries as they get older. For instance, the aforemen

tioned feed parser library is useful because its author, Mark Pilgrim, is very good at

keeping it up to date with the 13 "standards" that lie behind that "xml" button on

your favorite blog or web site. If the library were to fall into disuse, or Mark were to

stop working on it and no one else picked up the work, I d likely change to a differ

ent library or choose to maintain it myself.

There is another reason to not use someone else s code, and it will look amazingly

petty to all but the programmers reading this.

Technically speaking, this:

int myfunction(int a)

{

printf("My Function %d\n",a);

}

is the same as this:

int myfunction(int a) {

printf("My Function %d\n",a);

}

which is the same as this:

int myfunction(int a){ printf("My Function %d\n",a);}

and this:

int myfunction(int a){

printf("My
Function %d\n",a);

}

They compile to the same result on any given compiler.

I could go on, but I won t. The point is that, depending on the programmer or dic

tated company style, each of these is wrong, evil, bad, or awful, or perhaps one is

acceptable. Not all programmers and companies care about style, but many (one

might argue the smartest) do. The ones that do care actively dislike the ones that

don t and do not want to use their code. Should they have to touch the offending

3 This might seem strange, but programmers are OK with the odd performance hit sometimes.

Unpredictable results lead to crashed programs, however. This is not good, no matter what

you ve been told.

24
* *

Open Source and Proprietary Software Development

library, they will inevitably have to make it "readable." Whether you call this refac-

toring or prettifying or whatever, it can drive a programmer away from a hunk of

code, unless it really brings something fantastic along with it.

"My Goodness," you might consider asking, "are programmers delicate, petty crea

tures?" No, there are some very good reasons to have consistent code style. It aids in

debugging. Some say it reduces bugs (I d agree). It makes code navigation much faster

and makes it easier for people to write tools to generate and manipulate code than they

might otherwise. There are other reasons too, but I don t want to get too arcane. Some

languages, such as Python, have very rigid appearance rules, as appearance can dictate

how a variable can be used. Style may appear to be a trivial concern, but it isn t.

Comfort

Maybe you just want to do it yourself. Businesspeople in the industry who have grown

up around open source often comment that duplication of effort, or
"reinventing the

wheel," is not time well spent. I rarely hear this from programmers. When people hear

about KDE and GNOME, or Linux and BSD, or even more esoteric arguments about

which window manager to use, inevitably someone will chime in, "Obviously, they had

a lot of time on their hands. Otherwise, why would they have started from scratch?"

The implication is that the programmers have somehow wasted time. When I choose

to reimplement some technology or program, I know what I m doing, and even if it

is a "waste" of time or duplication of effort, I think of it as practice. And when I can

enjoy the luxury of implementing from scratch, I really like the results, because

they re all mine and what I ve developed works exactly the way I want it to.

But Why So Many of the Same Things?

Business, of course, is interested in productive developers, and productive developers
don t rewrite things, right? No, not necessarily. People rewrite code all the time. The

more-informed companies recognize that this type of thing is often inevitable, and the

best and most resourceful encourage this kind of mental knife sharpening, because it

leads to better developers and better code. Given the time, programmers often prefer to

leam from other people s code without actually using the code, and if open source ends

up as one big repository of example code, I call that a success.

Also, computers change. Computers, languages, compilers, and operating systems

change so quickly that a periodic rewrite of some code becomes vital, from a perfor
mance perspective. To take advantage of the newest processors, architectures, and
other advancements, a recompile will certainly be required and will likely expose
issues with your code (architecture changes lead to this directly).

4

For example, you write a program on your handy laptop, you compile it, and it runs great. Later,

you run it on your fabulous dual Opteron server. It crashes because you assumed an integer was 32
bits and the Opteron (running a 64-bit OS like Linux, of course) has 64-bit integers. This is a basic
error that comes up in a lot of different ways during 32-64 bit transitions.

25

But people are using libraries, code, and examples from open source code, copying

them into their codebases rapidly. Certainly this happens. Don t let my counter cases

fool you. It is a rare codebase that doesn t involve some open source software,

whether it is merely in the form of a standard library or a widget library, or is full of

the stuff. This is by design; if every program had to write every instruction down to

the operating system, or the machine itself, there would be no programs. The itera

tive building process, programs on top of libraries on top of the operating system, is

so productive that I can t imagine someone ignoring it. Even for the smallest embed

ded systems, designers are using the GNU compilers to create great programs for

their devices: compile, flash, and go.

Libraries, System Calls, and Widgets

Here we begin to see how open source ideals have changed proprietary development.

When proprietary software developers create a program, they may use free software,

created or derived libraries, widget libraries, and tools. This includes developers target

ing proprietary operating systems such as Windows and OS X. Developers creating

software, whether for OS X, Unix/Linux, or Windows, commonly use free tools to do

so. They almost always use free libraries in the creation of their programs and often use

free user interface elements during the creation of their systems.

Some might think I m indulging in some mission creep for free software here,

assigning a larger role to it than it maybe should enjoy. I m not. I ll take it even fur

ther: if there hadn t been free tools like the GNU compiler collection, the industry

would have been forced to create and release them. Otherwise, the computer

industry as we know it would not exist and would certainly not be as large as it is

right now. This is not to imply that companies somehow owe something to the free

software community. However, companies do help out when they can reap a long-

term benefit. IBM understands this, as do Novell, Google (my employer), and

many others. Even Microsoft uses and releases code under a variety of licenses,

including the GPL (its Unix services for Windows) and BSD (Wix), but Microsoft is

conflicted both internally and externally, so it s not as easy for it to embrace open
source.

Am I saying that without free tools, the compiler would try to charge a per-pro-

gram fee? No, I think that if free tools hadn t arrived and commoditized the com

piler, other competitive concerns would have kept the price of software develop

ment tools accessible and cheap. That said, I think free tools played a big part. Free

and open source software changed expectations. Microsoft and Intel make no

attempts to prevent developers from using their compilers to create free software or

software that is counter to their corporate goals. Client licenses, a common fixture

in the email/workflow market, are unheard of for mainstream development tools.

2B X Open Source and Proprietary Software Development

If there is one thing about free software that is downright scary to proprietary devel

opment shops, it may be this: software that is licensed per client almost always

comes under attack from free software. This is forcing in the software industry a shift

away from such per-client licenses in all but the most specialized verticals for

instance, the software that runs an MR1 machine, or air traffic control software, both

of which are so specialized as to not count, because every client is custom. The grand

irony here is that in some industries, such a high cost is attached to developing soft

ware that some are forming very open source-looking consortiums to solve common
software development problems.

Distributed Development

Distributed development is more than just a fad or even a trend. Organizations and

companies large and small are using diverse, globally distributed teams to develop
their software. The free software development movement showed the world how to

develop internationally. Well before SourceForge.net became a site that every pro

grammer had heard of, projects working together over the Internet or far-flung con

nected corporate networks developed much of the software that we use today.

In fact, the tools they developed to do that are now considered the baseline standard for

developerd everywhere. What company in its right mind doesn t mandate that its pro

grammers use some form of version control and bug tracking? I ask this rhetorically,

but for a long time in the software business, you couldn t make this assumption. Small

development shops would back up their data, for sure, but that s not version control.

Distributed development is about more than just version control. It s also about com
munications and bug tracking and distribution of the end result of software.

Understanding Version Control

Programming is an inherently incremental process. Code, then build, then test.

Repeat. Do not fold, spindle, or mutilate. 5 Each step requires the developer to save

the program and run it through a compiler or interpreter. After enough of these

cycles, the program can do a new thing or an old thing better, and the developer
checks the code into a repository, preferably not on his machine. Then the reposi

tory can be backed up or saved on a hierarchical storage system. Then, should a

developer s workstation crash, the worst case is that the only work lost is that done

since the last check-in.

This sentence is famous for being printed on punch cards, an early way of providing computers
with data. If they were folded, spindled, or mutilated, they jammed the readers which makes
one speculate what the punch card programmer used for version control. The answer is right
there in front of you: as the cards went through revisions, they swapped out cards and retained
the old, original cards.

Distributed Development * 27

What is actually stored from check-in to check-in is the difference from one version to

the next. Consider a 100-line program, in which three lines in a program read:

for (i=i; i &lt; l; i++) {

printf("Hello WorldVn");

}

and one link needs to be changed to:

for (i=l; i &lt; 100; i++) {

printf("Hello to a vast collection of worlds
!\n");

}

which would then be checked back in. The system would note that only one line had

changed and store only the difference between the two files. This way, we avoid

wasting storage on what is mostly the same data.

The value of having these iterations can t be overstated. Having a previously known,

working (or even broken) copy can help in the event of an editing problem, or when

you re trying to track down a bug that simply wasn t there a revision ago. In desper
ate cases, you can revert to a previous version and start from there. This is like the

undo option in your favorite word processor, but one that persists from day to day.

Version control isn t used just in development. I know of IT shops and people who

keep entire configuration directories (/etc) in version control to protect against editing

typos and to help with the rapid setup of new systems. Some people like to keep their

home directory in a version control system for the ultimate in document protection.

There is even a wiki project that sits on top of the Subversion version control system.

Additionally, good version control systems allow for branching say, for a develop
ment and a release branch. The most popular version control system that many open
source projects use is CVS.

CVS

CVS, the concurrent versioning system, allows developers all over the world to work

on a local copy of a codebase, going through the familiar "code, build, test" cycles,

and check in the differences. CVS is the old standby of version control, much in the

same way RCS/SCCS was before it. There are clients for every development environ

ment and it is a rare professional developer who hasn t been exposed to it.

Since it is easy to use and install and it enjoys wide vendor support, CVS continues

to be used all over the world and is the dominant version control platform.

Subversion

Only the rise of Subversion has brought real competition to the free version control

space. With a much more advanced data store than CVS and with clients available for

all platforms, Subversion (SVN) is also very good at dealing with binary data and

28 X Open Source and Proprietary Software Development

branching. Both are things that CVS isn t very good at. SVN is also very efficient to use

remotely, and CVS is not; CVS was designed for local users and remote use was tacked

on later. Additionally, SVN supports a variety of access control methods, supporting

any authentication scheme that Apache does (Subversion is an Apache project), which

includes LDAP, SMB, or any the developers wish to roll for themselves.

What About SourceSafe?

SourceSafe isn t really version control. Local version control, whether CVS or Source

Safe, is just backup, requiring a level of hardware reliability that simply doesn t exist

on a desktop. Since SourceSafe is not designed to be used remotely, you take the life

of your codebase in your hands when you use it. There are some SourceSafe remot-

ing programs out there if you must use SourceSafe, but I can t recommend them so

long as decent, free SVN and CVS plug-ins exist for Visual Studio.

The Special Case of BitKeeper

BitKeeper, which was written by Larry McVoy, was chosen by Linus Torvalds to use

for version control for the Linux kernel. For the Linux kernel, BitKeeper was a very

good choice, given the kinds of problems that arise with Linux kernel development.

Written for distributed development, BitKeeper is very good at managing multiple

repositories and multiple incoming patch streams.

Why is this important? With most version control systems, all your repositories are

slaves of one master and resolving differences between different slaves and masters

can be very difficult.

The only "problem"
with the kernel team s use of BitKeeper was that BitKeeper was

not a free software program, although it was available for the use of free software

developers at no charge. I say was because Larry McVoy recently decided to pull the

free version, thus making it impossible for Linux kernel developers to work on the

program without paying a large fee. 6

A great number of developers lamented the use of a proprietary tool for free software

development, and the movement off BitKeeper, while disruptive, is a welcome change.

BitKeeper is a tool designed with the open source software model in mind. It has

found success among large proprietary development houses specifically because the

problems that faced the kernel team in 2001 are the same ones that increasingly face

proprietary development shops. All of these teams, not just those working on open
source development projects, now face multiple, far-flung teams that are engaged in

collaborative development and struggle to do it effectively.

6 The kernel team is in the process of moving off of BitKeeper as of this writing.

Distributed Development *C 23

Collaborative Development

You have a developer in Tokyo, a team in Bangalore, a team in Zurich, and a shop in

Seattle, all working on the same codebase. How can you possibly keep the develop
ment train from coming off the rails? Communication!

IRC/IM/Email

One might imagine that only now, with the advent of IM and VoIP, can developers

keep up with each other. In fact, developers have stayed in touch in something

approximating real time since the early days of Unix, when they began to have a

great variety of communications tools to use. 7 Early on, two developers on the same

machine used the Write or Talk Unix programs, which allowed for a simple

exchange of text between users. This grew into Internet Relay Chat (IRC) and then

Instant Messenger (IM).

Email itself plays the most important role in development. It is the base packet of

persistent knowledge that distributed developer teams have. Wikis are also taking

hold as repositories of information.

VoIP

Strangely (to nondevelopers) voice simply hasn t caught on as a terrific tool for ongoing

developer communications. While a regular conference call is useful for keeping every

one moving in the same direction, the idea of vocal input while developing would drive

many coders away screaming. The phone isn t evil, but maintaining an uninterruptible

flow can be very important to developer productivity. Phones also do not create a logfile

or other transcript that can be referred to later. Don t take my experiences for gospel

here. Read the book Peopleware
8 for more information about this. Everywhere I ve ever

worked, the one constant has been developers wearing headphones, but listening to

music, not other developers yammering in their ears.

SourceForge

The online site SourceForge.net is the largest concentration of open source projects

and code on the planet. SourceForge boasts some 100,000 projects and 1 million

registered developers, and people use its integrated version control, project web

hosting, file release mechanism, bug control, and mailing lists to write a vast amount

of software. Pulling together these features on a free platform for open source devel

opers proved to be a revolutionary concept. Before, people were left implementing

this themselves with Bugzilla (a bug-tracking mechanism) and CVS or some other

version control/bug-tracking facilities.

7 In fact, the Unix "write" command allowed hackers in the 1970s to communicate in a fashion

not so different from IM.

8 Tom Demarco and Timothy Lister, Peopleware (New York, NY: Dorset House Publishing

Company, 1999).

30
* *

Open Source and Proprietary Software Development

SourceForge represents, for a lot of people, the next stage in developer environ

ments. VA Software, the company that runs SourceForge through its Open Source

Technology Group (OSTG) subsidiary, sells this sort of solution into the enterprise,

as does the Brisbane, California-based Collab.net.

Software Distribution

While free software developers know how to code, what about getting the code in

front of the user? In the early days of the Free Software Foundation (FSF), the answer

was to send out tapes and disks to users who wanted the tools, for a reasonable fee.

Now that so many people have connections to the Internet, boxed software is begin

ning to show its age, but software producers are really just now learning from open

source how to distribute software in this way.

Dependencies

When you compile a piece of software, you sometimes end up relying on libraries that

you must call from your program to do some task. If you try to run the program with

out the expected complement of libraries, it cannot run or it may run poorly. Open
source developers have created some very smart packaging and installation systems and

filesystem methods that can make this a more tractable problem. Once they created

these packaging systems and combined them with the Internet, they got online updat

ing. The irony is that, in a lot of ways, Linux and Unix were schooled in this by Win

dows. A common complaint regarding Linux when comparing it to Windows and OS X

is that software can be very difficult to install. One could argue that Windows isn t all

that easy to install either, but since Windows is preinstalled on most computers, this is

an argument that often falls on deaf ears.

I don t think Linux developers have learned to do installation well yet. There are some

standouts, but for the most part, installation ease is still a work in progress. One thing

free and proprietary share is the appreciation for and development of online updating

systems. This is something Linux distributions get very right. In short, once Linux is

installed on your machine, it can be very easy to keep it up to date.

Online Updating/Installation

Online updating is a terrific way of getting software onto your machines. More

importantly, it is a terrific way to maintain a secure system over time. Since Linux

distributions don t have to worry about software license ownership, it is very easy for

the software to determine whether to download a patch or fix, and thus many Linux

distributions have systems to facilitate this. Proprietary software development houses

such as Microsoft are still trying to figure this out. It is a hard problem when you mix

it with licensing concerns. Additionally, when it s done wrong, you can literally crash

thousands, or in the case of Microsoft and Apple, millions of machines, so it is really

critical to do well. That the Debian and Fedora Core Linux distributions do this at all

is quite a feat.

Software Distribution X 31

Want a sticky issue? Do you trust your software vendor to allow it to automatically

update your software? For some, this question is heard in these ways:

Do you trust Microsoft to update your operating system?

Do you trust a bunch of bearded Unix programmers to update your system?

How you react to these questions has a lot to do with the realities of how difficult the

problem is, how successful previous auto-updates have been in the past, and how

trusting you are which brings up the subject of the next section.

How Proprietary Software Development Has Changed Open Source

Open source isn t magic, and developers aren t magicians. No developer is immune

to security problems and bugs creeping into his code.

Bugs/Security

Free, open, proprietary, closed. . ..Bugs happen. I think open source means fewer bugs,

and people have written tens of thousands of words explaining how they agree or dis

agree with me. One thing I know Im right about is that both kinds of code have bugs.

Bugs persist longer in closed codebases, and their closed nature keeps bugs persistent.

If I may paraphrase Socrates, "An unexamined codebase is dead," and by dead I mean

killed by the hostile environment that is viruses, worms, crackers, and Trojans. Like

bugs, security flaws happen in both free and closed software. As a project matures, it

must assemble a mantle of testing and quality assurance (QA) techniques that are

vital to its ongoing health. I think open source development has learned much from

the processes that proprietary software development houses have come up with to

support their paying customers.

Testing and QA

As projects mature, so do the testing suites around them. This is a truism for free and

for closed software codebases, but the research around this originated in commercial

software/hardware and in academia, and open source software has been a ready con

sumer of this information. The most popular talk I attended lately was in unit testing

for Python at the O Reilly Open Source Conference. The room was packed, with peo

ple sitting in the aisles. Testing is huge and is required for any project, free or not.

Project Scaling

Scaling is hard. Whether we re talking about development group size, bandwidth,

space, or whatever, scaling any programming project is nontrivial.

Software development has its limits. Product teams can t grow too fast or too large

without one of two things happening either disintermediating technology or

project ossification. Fred Brooks s seminal book, The Mythical Man-Month, covered

32
*
* Open Source and Proprietary Software Development

this in depth, and the existence of F/OSS development methodologies doesn t change

that. In fact, the tools and changes free software has brought to prominence are all

around disintermediation and disconnected collaboration.

F/OSS isn t magic. It isn t breaking the speed of light. Most projects, with some nota

ble exceptions, are composed of small teams, with one to three people doing the vast

majority of the coding. If you care about project size, you would be well served by

reading the findings of the Boston Consulting Group s study of open source software

developers on SourceForge. This revealing study analyzes project metrics and moti

vations. For one thing, you see that projects almost always comprise fewer than five

active developers. Many projects have only one developer.

So, what am I talking about when I say disintermediating technology? Look at it this

way. Imagine that one person decides to create a cake from scratch. He d have to

start with a cake mix and some milk and an egg, right? No! He d need chocolate,

milk, flour, yeast, water, and the other ingredients, right? No! Just for the milk, he d

need a cow, some food and water for the cow, a bench, a milk bottle, a chiller, a pas

teurizer, a cap and a rag, some bag balm, and so on, right? Well, you re getting

closer. The point is that we accept interfaces all the time, and the successful project

finds these interfaces, formalizes them, and spreads the work out along these lines.

We accept power at 120 volts at 60 hertz alternating current. We don t generate the

power ourselves. We accept that we don t need to dig for oil, refine it, and pour the

refined gas into our cars. We use interfaces with different systems all the time. Programs,

too, have interfaces, and the success of a program is in how it manages these interfaces.

Proprietary or not, a successful program is one that interfaces effectively between sys

tems and teams working on these systems. Microsoft doesn t have 5,000 engineers

working on Windows. It has them working on the kernel, the printing subsystem,

the windowing system, the voice synthesis module, and other components. More

importantly, it has groups that work on interfacing between the systems so that they

(theoretically) work as a whole. Likewise for the Linux kernel; Linus interacts with a

number of captains who control different subsystems, including networking, disk

drives, memory, CPU support, and so on. Fractionation, when possible, is key, and

when not possible, disastrous which is why groups working to integrate the whole

and making sure the interfaces are appropriate can make all the difference in the suc

cess or failure of a project.

This interface management is something that free software has done very well. Many
commercial developers would be well served to learn from open source s interface

management practices.

How Proprietary Software Development Has Changed Open Source 2 C 33

Control

Control is something customers and end users have never had over their code. You
don t buy proprietary software, you rent it, and that rental can be rescinded at any time.

If you read the end-user license agreements (EULAs) that accompany proprietary soft

ware, you may be left with the feeling that you are not trusted and not liked all that

much. For instance, in Microsoft Word s EULA, there is this charming note:

You may not copy or post any templates available through Internet-based services

on any network computer or broadcast it in any media.

So, if you were to take a standard Microsoft Word template (which all templates are

derived from) and make one that is suited to your business as, say, a publisher, you
would be in violation of your EULA with Microsoft, and thus vulnerable to its lawfirm.

Controlling your software destiny is something I consider extremely important. Take,

for instance, my employer, Google. We are able to fix and change the Linux kernel to

fit our very specific needs. Do we have to check with Linus or one of his lieutenants

before, during, or after we change the network stack? No. If we were running NT on

our machines, we would be unable to get such changes made, and were we to enter

into a deal where Microsoft would incorporate our requested changes, we would in

effect be informing a competitor of our development strategy.

Another example is a recent service pack from Microsoft, which featured a firewall and

antivirus package. This package, which is turned on by default after service pack installa

tion, was aimed at stopping the viruses and Trojans endemic to the Windows experi

ence. Funnily enough, it considered iTunes a virus and presented a fairly confusing mes

sage asking the user to authorize the program s use of the network. 9 That Microsoft s own
media player, which has common network access methods, wasn t impeded is telling.

Your computer is not your own; you only borrow that which makes it useful, and

when that is taken away, you are left with nothing but a toxic pile of heavy metals

and aluminum.

I think this is a subtle but important part of open source s popularity. Many people
and companies are interested in controlling their own destiny, and Linux and other

open source programs make this possible.

Intellectual Property

Free-software developers believe in intellectual property, probably more so than peo

ple who never consider open source software. Developers creating open source have

to believe, as the entire structure of the GPL, BSD, MPL, and other licenses depends
on the existence of copyright to enforce the clever requirements of those licenses.

iTunes has a nifty sharing mechanism whereby users stream music to other iTunes users over

the network. It s pretty neat.

34
* *

Open Source and Proprietary Software Development

When you hear people criticizing free-software developers as guiltless communists or

pie-in-the-sky dreamers, it is worth remembering that without copyright, there can t

be free software.

Discussions concerning intellectual property and free software usually revolve

around two issues: patents and trademark. Software can be patented, and things can

be trademarked. Exactly how these intersect with free software is complex. Can a

piece of software which is patented be released under the GPL and still hold to the

letter of the license? Can a program name be trademarked and then released under

the BSD and still be a meaningful release? Legal opinion and precedence thus far pro
vide no definite answer.

Open source developers are learning, though, paying attention to the current events

around intellectual property and how it affects them.

The reality of intellectual property is something modern developers are almost

required to learn. Learning the laws concerning software is the way to protect them

selves from those who might send the feds out to arrest them when they come to the

United States. I know that sounds like I m typing this with tinfoil on my head, but I

am not kidding.
10

The problem with this learning process is that it does take time away from coding,
which is not good and is a net loss for free software which may indeed have been

the whole point.

Some Final Words

While open source software is about freedom and licenses, it is nonetheless true that

open source costs less, under many circumstances, than proprietary software. This is

an important aspect of free software. Additionally, it has to be cost competitive

against other free products, just as software that costs money must compete against
an open source/free offering.

10 I wish I were, but I m not. It happened to Russian developer Dmitry Sklyarov, who intended to

discuss his reverse engineering of the Adobe PDF file format at the DefCon developers
conference in Las Vegas. Upon landing at McCarran International Airport, he was met by the

FBI, which placed him under arrest under the auspices of the Digital Millenium Copyright Act
on behalf of Adobe Corporation. As a result, Linux kernel developers no longer have a
substantial meeting in the United States, choosing instead to meet in Canada and Australia, two
countries that do not have similar laws and rarely extradite for intellectual property-related
crimes of this nature. Developers felt this was necessary because the Linux kernel uses code that
was reverse engineered. Reverse engineering, by the way, is what made Dell, Phoenix, AMI,
AMD, EMC, and a large number of other companies both possible and profitable.

Some Final Words
**

35

Free Things Are Still Cheaper Than Expensive Things

When I say "competes against other free products," I m talking about pirated copies

of Windows, Office, SQL Server, Oracle, and many others competing against Linux,

OpenOffice, MySQL, Postgres, and other best-of-breed free software applications.

These applications are doing very well in environments that have little regard, legally

or culturally, for software licenses.

Free things have a velocity all their own, and people forget that. I ll leave you with a

little anecdote from when I was working for a large law firm in Washington, DC. I

was still in college studying computer science, and I ran the law firm s email net

work during the day. This was 1996 or so, and TCP/IP was clearly the big winner in

the network format wars versus NetBIOS and SNA, to a degree that no one could

have appreciated. I was in the elevator with one of the intellectual property attorneys

at the firm a fairly technical guy when he said something like: "You know, if TCP/

IP had been properly protected and patented, we could have rigged it so that every

packet cost money; they really missed the boat on that one."

Where would the Internet be if this was true? I don t know, but I do know one thing:

the Internet would not be running TCP/IP. So, enjoy the freedom of open source

software. It is there for you!

36 X Open Source and Proprietary Software Development

t ^4 CHAPTER 3

Jeremy Allison

A Tale of Two Standards

It was the best of protocols, it was the worst of protocols, it was the age of

monopoly, it was the age of Free Software, it was the epoch of openness, it was

the epoch of proprietary lock-in, it was the season of GNU, it was the season of

Microsoft, it was the spring of Linux, it was the winter of Windows....

Samba is commonly used as the
"glue"

between the separate worlds of Unix and

Windows, and because of that, Samba developers have to intimately understand the

design and implementation decisions made in both systems. It is no surprise that

Samba is considered one of the most difficult Free Software projects to understand

and to join, outclassed in complexity only by the voodoo black art of Linux kernel

development. Samba really isn t that hard, however, once you look at the different

standards implemented in the two systems (although some of the decisions in Win

dows can cause raised eyebrows).

In developing Samba, we re creating a bridge between the most popular standards

currently deployed in the computing world: the Unix/Linux standard of POSIX and

the Microsoft-developed de facto standard of Win32. In this chapter, I will examine

these two standards from an application programmer s perspective. In doing so, I

thought it might be instructive to look at the reasons why each of them exists, what

the intention for creating the particular standard might have been, and how well they

have stood the test of time and the needs of programmers. A historical perspective is

very important, as we look to the future and decide what standards we should

encourage governments and businesses to support, and what effect this will have on

the software landscape in the early 21st century.

Standard: (noun) A flag, banner, or ensign, especially. An emblem or flag of an

army, raised on a pole to indicate the rallying point in battle. 1

The POSIX Standard

POSIX was named (like many things in the Unix software world) by Richard Stallman. It

stands for Portable Operating System Interface-X, meaning a portable definition of a

Unix-like operating system API. The reason for the existence of the POSIX standard is

interesting and lies in the history of the Unix family of operating systems.

As is commonly known, Unix was created in 1969 at AT&T Bell Labs by Ken

Thompson and Dennis Richie. Not originally designed for commercialization, the

source code was shipped to universities around the world, most notably Berkeley in

California. One of the world s first truly portable operating systems, Unix soon splin

tered into many different versions as people modified the source code to meet their

own requirements. Once companies like Sun Microsystems and the original, preliti-

gious SCO (Santa Cruz Organization) began to commercialize Unix, the original

Unix system call API remained the core of the Unix system, but each company added

proprietary extensions to differentiate their own version of Unix. Thus began the first

of the "Unix wars" (I m a veteran, but I don t get disability benefits for the scars they

caused). For independent software vendors (ISVs), such proprietary variants were a

nightmare. You couldn t assume that code that ran correctly on one Unix would even

compile on another.

During the late 1980s, in an attempt to create a common API for all Unix systems,

and fix this problem, the POSIX set of standards was born. Because no one trusted

any of the Unix vendors, the Institute of Electrical and Electronics Engineers (IEEE)

shepherded the standards process and created the 1003 series of standards, known
as POSIX. The POSIX standards cover much more than the operating system APIs,

going into detail on system commands, shell scripting, and many other parts of what

it means to be a Unix system. I m only going to discuss the programming API stan

dard part of POSIX here because, as a programmer, that s really the only part of it I

care about on a day-to-day basis.

Few people have actually seen an official POSIX standard document, as the IEEE

charges money for copies. Back before the Web became really popular, I bought one

just to take a look at the real thing. It wasn t cheap (a few hundred dollars, as I

recall). Amusingly enough, I don t think Linus Torvalds ever read or referred to it

when he was creating Linux; he used other vendors references to it and manpage

descriptions of what POSIX calls were supposed to do.

1 http://www.dictionary.com.

Reading the POSIX standard document, however, is very interesting. It reads like a

legal document; every line of every section is numbered so that it can be referred to

in other parts of the text. It s detailed. Really detailed. The reason for such detail is

that it was designed to be a complete specification of how a Unix system has to

behave when called from an application program. The secret is that it was meant to

allow someone reading the specification to completely reimplement their own ver

sion of a Unix operating system starting from scratch, with nothing more than the

POSIX spec. The goal is that if someone writes an application that conforms to the

POSIX specification, the resulting application can be compiled with no changes on

any system that is POSIX compliant. There is even a POSIX conformance suite,

which allows a system passing the tests to be officially branded a POSIX-compliant

system. This was created to reduce costs in government and business procurement

procedures. The idea was that you specified "POSIX
compliant" in your software pur

chasing requests, the cheapest system that had the branding could be selected, and it

would satisfy the system requirement.

This ended up being less useful than it sounds, given that Microsoft Windows NT
has been branded POSIX compliant and generic Linux has not.

Sounds wonderful, right? Unfortunately, reality intruded its ugly head somewhere

along the way. Vendors didn t want to give up their proprietary advantages, so each

pushed to get its particular implementation of a feature into POSIX. As all vendors

don t have implementations of all parts of the standard, this means that many of the

features in POSIX are optional usually just the one you need for your application.
How can you tell if an implementation of POSIX has the feature you need? If you re

lucky, you can test for it at compile time.

The GNU project suffered from these
"optional features" more than most proprietary

software vendors because the GNU software is intended to be portable across as many
systems as possible. To make their software portable across all the weird and wonder
ful POSIX variants, the wonderful suite of programs known as GNU autoconf was cre

ated. The GNU autoconf system allows you to test to see whether a feature exists or

works correctly before you even compile the code, thus allowing an application pro
grammer to degrade missing functionality gracefully (i.e., not fail at runtime).

Unfortunately, not all features can be tested this way, as sometimes a standard can

give too much
flexibility, thus causing massive runtime headaches. One of the most

instructive examples is in the pathconf () call. The function prototype for

pathconf () looks like this :

long pathconf (char *path, int name);

Here, char *path is a pathname on the system and int name is a defined constant giv

ing a configuration option you want to query. The constants causing problems are:

_PC_NAME_MAX

_PC_PATH_MAX

The POSIX Standard X 39

_PC_NAME_MAX queries for the maximum number of characters that can be used in a file

name in a particular directory (specified by char *path) on the system. _PC_PATH_MAX
queries for the maximum number of characters that can be used in a relative path from
the particular directory. This seems fine until you consider how Unix filesystems are

structured and put together. A typical Unix filesystem looks like Figure 3-1.

/usr /home
|

r~ ~~i r~ ~n
bin

I Jeremy |
chris

Figure 3-1. Typical Unixfilesystem

Any of the directory nodes, such as /usr/bin or /mnt, could be a different filesystem

type, not the standard Unix filesystem (maybe even network mounted). In Figure 3-1,

the /mnt/msdos_dir path has been mounted from a partition containing an old MS-

DOS-style FAT filesystem type. The maximum directory entry length on such a system
is the old DOS 8.3 maximum of 1 1 characters. But below the Windows directory could

be mounted a different filesystem type with different maximum name restrictions

maybe an NFS mount from a different machine, for example, on the path /mnt/msdos_

dir/nfs_dir. Now the pathconf () can accommodate these restrictions and tell your

application about it if you remember to call it on every single possible path and path

component your application might use! Hands up, all application programmers who actu

ally do this....Yes, I thought so. (You at the back, put your hand down. I know how

you do things in the U.S. Star Wars missile defense program, but no one programs in

ADA anymore, plus your tests never work, OK?) This is an example of something that

looks good on paper but in practical terms almost no one would use in an actual appli
cation. I know we don t in Samba, not even in the "rewritten from scratch with correct

ness in mind" Samba4 implementation.

Now let s look at an example of where POSIX gets it spectacularly wrong, and why
this happens.

First Implementation Past the Post

Any application program dealing with multiple access to files has to deal with file

locking. File locking has several potential strategies, ranging from the "lock this file

for my exclusive use" method, to the "lock these 4 bytes at offset 23 as I m going to

be reading from them soon" level of granularity. POSIX implements this kind of

functionality via the fcntl() call, a sort of jack-of-all-trades for manipulating files

(hence "fcntl
-

file control"). It s not important to know exactly how to program
this call. Suffice it to say that a code fragment to set up such a byte range lock looks

something like this:

int fd =
open("/path/to/file", 0_RDWR);

Now, set up the struct flock structure to describe the kind of byte range lock we need:

int ret = fcntl(fd, F_SETLKW, &flock_struct);

If ret is zero, we got the lock. Looks simple, right? The byte range lock we got on the

region of the file is advisory. This means that other processes can ignore it and are

not restricted in terms of reading or writing the byte range covered by the region

(that s a difference from the Win32 way of doing things, in which locks are manda

tory; if a lock is in place on a region, no other process can write to that region, even

if it doesn t test for locks). An existing lock can be detected by another process doing
its own fcntl () call, asking to lock its own region of interest. Another useful feature

is that once the file descriptor open on the file (int fd in the previous example) is

closed, the lock is silently removed. This is perfectly acceptable and a rational way of

specifying a file locking primitive; just what you d want.

However, modern Unix processes are not single threaded. They commonly consist of

a collection of separate threads of execution, separately scheduled by the kernel.

Because the lock primitive has a per-process scope, this means that if separate
threads in the same process ask for a lock over the same area, it won t conflict. In

addition, because the number of lock requests by a single process over the same

region is not recorded (according to the spec), you can lock the region 10 times, but

you need to unlock it only once. This is sometimes what you want, but not always:
consider a library routine that needs to access a region of a file but doesn t know if

the calling processes have the file open. Even if an open file descriptor is passed into

the library, the library code can t take any locks. It can never know if it is safe to

unlock again without race conditions.

This is an example of a POSIX interface not being future proofed against modern

techniques such as threading. A simple amendment to the original primitive allow

ing a user-defined
"locking context" (like a process ID) to be entered in the struct

flock structure used to define the lock would have fixed this problem, along with
extra flags allowing the number of locks per context to be recorded if needed.

But it gets worse. Consider the following code:

int second_fd;
int ret;

struct flock lock;

int fd =
open("/path/to/file", 0_RDWR);

First Implementation Past the Post X 41

/* Set up the "struct flock" structure to describe the

kind of byte range lock we need. */

lock.ljtype = F_WRLCK;

lock.l_whence =
SEEK_SET;

lock.l_start = 0;

lock.l_len = 4;

lock.l_pid = getpid();

ret = fcntl(fd, F_SETLKw, &lock);

/* Assume we got the lock above (ie. ret == o). */

/* Get a second file descriptor open on

the original file. Assume this succeeds. */

second_fd = dup(fd);

/* Now immediately close it again. */

ret =
close(second_fd);

What do you think the effect of this code on the lock created on the first file descrip

tor should be (so long as the close () call returns zero)? If you think it should be

silently removed when the second file descriptor is closed, congratulations you
have the same warped mind as the people who implemented the POSIX spec. Yes,

that s correct. Any successful close () call on any file descriptor referencing a file

with locks will drop all the locks on that file, even if they were obtained on another,

still-open file descriptor.

Let me be clear: this behavior is never what you want. Even experienced programmers
are surprised by this behavior, because it makes no sense. After I ve described this to

Linux kernel hackers their responsse have been that of stunned silence, followed by
"but why would it do that"?

2

The reason is historical and in my opinion, reflects a flaw in the POSIX standards pro

cess, one that hopefully won t be repeated in the future. By talking to longtime BSD

hacker and POSIX standards committee member, Kirk McKusick (he of the BSD dae

mon artwork), I finally tracked down why this insane behavior was standardized by the

POSIX committee. As he recalls, AT&T took the current behavior to the standards

committee as a proposal for byte range locking, as this was how their current code

To discover if this functionality was actually correctly used by any application program or if

anything really depended on it, Andrew Tridgell, the original author of Samba, once hacked the

kernel on his Linux laptop to write a kernel debug message if ever this condition occurred. After

a week of continuous use, he found one message logged. When he investigated, it turned out to

be a bug in the exportfs NFS file exporting command, whereby a library routine was opening
and closing the /etc /exports file that had been opened and locked by the main exportfs

code. Obviously, the authors didn t expect it to do that either.

42
x&gt; A Tale of Two Standards

implementation worked. The committee asked other ISVs if this was how locking

should be done. The ISVs who cared about byte range locking were the large (at the

time) database vendors, such as Oracle, Sybase, and Informix. All these companies did

byte range locking within their own applications, and none of them depended on, or

needed, the underlying operating system to provide locking services for them. So their

unanimous answer was "we don t care." In the absence of any strong negative feedback

on a proposal, the committee added it "as is" and took as the desired behavior the spe
cifics of the first implementation, the brain-dead one from AT&T.

The "first implementation past the
post" style of standardization has saddled POSIX

systems with one of the most broken locking implementations in computing history.

My hope is that eventually Linux will provide a sane superset of this functionality

that can be adopted by other Unixes and eventually find its way back into POSIX.

OK, having dumped on POSIX enough, let s look at one of the things that POSIX

really got right and that is an example worth following in the future.

Future Proofing

One of the great successes of POSIX is the ease in which it has adapted to the change
from 32-bit to 64-bit computing. Many POSIX applications were able to move to a 64-

bit environment with very little or no change, and the reason for that is abstract types.

In contrast to the Win32 API (which even has a bit-size dependency in its very

name), all of the POSIX interfaces are defined in terms of abstract datatypes. A file

size in POSIX isn t described as a "32-bit
integer"

or even as a C-language type of

unsigned int, but as the type off_t. What is off_t? The answer depends completely
on the system implementation. On small or older systems, it is usually defined as a

signed 32-bit integer (it s used as a seek position so that it can have a negative value),

and on newer systems (Linux, for example) it s defined as a signed 64-bit integer. As

long as applications are careful to cast integer types only to the correct off_t type
and use these for file-size manipulation, the same application will work on both

small and large POSIX systems.

This wasn t done all at once, because most commercial Unix vendors have to provide

binary compatibility to older applications running on newer systems, so POSIX had to

cope with both 32-bit file-sized applications running alongside newer 64-bit-capable

applications on the new 64-bit systems. The way to make this work was determined by
the Large File Support working group, which finished its work during the mid-1990s.

The transition to 64 bits was seen as a three-stage process. Stage one was the original
old 32-bit applications; stage two was seen as a transitional stage, where new ver

sions of the POSIX interfaces were introduced to allow newer applications to explic

itly select 64-bit sizes, and stage three was where all the original POSIX interfaces

default to 64-bit clean.

Future Proofing 2* 43

As is usual in POSIX, the selection of what features to support was made available

using compile-time macro definitions that could be selected by the application

writer. The macros used were:

_LARGEFILE_SOURCE

_LARGEFILE64_SOURCE

_FILE_OFFSET_BITS

If _LARGEFILE_SOURCE is defined, a few extra functions are made available to applica

tions to fix the problems in some older interfaces, but the default file access is still 32

bit. This corresponds to stage one, described earlier.

If _LARGEFILE64_SOURCE is defined, a whole new set of interfaces is available to POSIX

applications that can be explicitly selected for 64-bit file access. These interfaces

explicitly allow 64-bit file access and have 64 coded into their names. So, open()

becomes open64(), lseek() becomes Iseek64(), and a new abstract datatype called

off64_t is created and used instead of the off_t file-size datatype in such structures

as struct stat64. This corresponds to stage two.

_FILE_OFFSET_BITS represents stage three; this macro can be undefined or set to the val

ues 32 or 64. If undefined or set to 32, it corresponds to stage one (_LARGEFILE_SOURCE).

If set to 64, all the original interfaces such as open() and lseek() are transparently

mapped to the 64-bit clean interfaces. This is the end stage of porting to 64 bits, where

the underlying system is inherently 64 bit, and nothing special needs to be done to make

an application 64-bit aware. On a native 64-bit system that has no older 32-bit binary

support, this becomes the default.

As you can see, if a 32-bit POSIX application had no embedded dependencies on file

size, simply adding the compile-time flag -D_FILE_OFFSET_BITS=64 would allow a

transparent port to a 64-bit system. There are few such applications, though, and

Samba was not one of them. We had to go through the stage-two pain of using 64-bit

interfaces explicitly (which we did around 1998) before we could track down all the

bugs associated with moving to 64 bits. But we didn t have to rewrite completely,

and I consider that a success of the underlying standard.

This is an example of how the POSIX standard was farsighted enough to define some

interfaces that were so portable and clean that they could survive a transition of

underlying native CPU word length. Few other standards can make that claim.

Wither POSIX?

The POSIX standard has not been static; it has managed to evolve (although some

would argue too slowly) over time. A major step forward was the establishment of

the Single Unix Specification (SUS), which is a superset of POSIX developed in 1998

and adopted by all the major Unix vendors and shepherded by the Unix standards

body, "the Open Group."
It was a great leap forward when this specification was

44 xC A Tale of Two Standards

finally made available for free on the Web from the Open Group web site at http://

www.unix.org. It certainly saved me from having to hunt down cheap POSIX specifi

cations in secondhand bookshops in Mountain View, California.

The expanded SUS now covers such issues as real-time programming, concurrent pro

gramming via the POSIX thread (pthread) interfaces, and internationalization and

localization, but unfortunately it does not cover file Access Control Lists (ACLs). Sadly,

that specification was never fully agreed on, and so has never made it into the official

documents. Interestingly enough, the SUS also doesn t cover the GUI elements,

because the history of Unix as primarily a server operating system has meant that GUIs

have never been given the priority necessary for Unix to become a desktop system.

Looking at what happened with ACLs is instructive when considering the future of

POSIX and the SUS. Because ACLs were sorely needed in real-world environments,

individual Unix vendors, such as SGI, Sun, HP, and IBM, added them to their own
Unix variants. But without a true standards document, they fell into their old evil

ways and added them with different specifications. Then along came Linux....

Linux changed everything. In many ways, the old joke is true: Linux is the Unix

defragmentation tool. 3 As Linux became more popular, programs originally written

for other Unixes were first ported to it, and then after a while were written for it and

then ported to other platforms. This happened to Samba. Sun s SunOS on a SPARC

system was, at first, our primary user platform, but after five years or so we rapidly

migrated to Linux on Intel x86 systems. We now develop almost exclusively on

Linux, and from there port to other Unix systems.

This means the Linux interfaces are starting to take over as the most important stan

dards for Unix-like systems to follow, in some ways supplanting POSIX and the SUS.

The ACL implementation for Linux was added into the system, at first via a patch by
Andreas Griinbacher, held externally to the main kernel tree. Finally it was adopted

by the main Linux vendors, SuSE (now Novell) and Red Hat, and has become part of

the official kernel. Other free Unix systems such as FreeBSD quickly followed with

their own implementation of the last draft of the POSIX ACL specification, and now
there are desktop GUI and other application programs that use the Linux ACL inter

faces. As this code is ported to other systems, the pressure is on them to conform to

the Linux APIs, not to any standards document. Sun has announced that its Solaris

10 on Intel release will run Linux applications "better than Linux" and will be fully

compatible at the system call level with Linux applications. This means Sun must

have mapped the Linux ACL interface onto the Solaris one. Is that a good thing?

In a world where Linux is rapidly becoming the dominant version of Unix, does

POSIX still have relevance, or should we just assume Linux is the new POSIX?

3 This was inspired by novice system administrators coming to Unix from the Windows platform
for the first time and asking "where is the system defragmentation tool?", the concept of a

filesystem designed well enough not to need one being outside their experience.

Wither POSIX? JJ 45

The Win32 (Windows) Standard

Win32 was named for an expansion of the older Microsoft Windows interface,

renamed the Win 16 interface once Microsoft was shipping credible 32-bit systems. 1

have a confession to make. In my career, I completely ignored the original 16-bit

Windows on MS-DOS. At that time, I was already working on sane 32-bit systems

(68000 based), and dealing with the original insane 8086 segmented architecture

was too painful to contemplate. Win32 was Microsoft s attempt to move the older

architecture beyond the limitations of MS-DOS and into something that could com

pete with Unix systems and to a large extent Microsoft succeeded spectacularly.

The original 16-bit Windows API added a common GUI on top of MS-DOS, and also

abstracted out the lower-level MS-DOS interfaces so that application code had a

much cleaner "C" interface to operating system services (not that MS-DOS provided

many of those). The Win32 Windows API was actually the
"application"

level API

(not the system call level; I ll discuss that in a moment) for a completely new operat

ing system that would soon be known as Windows NT ("New Technology"). This

new system was designed and implemented by Dave Cutler, the architect of Digital

Equipment Corporation s VMS system, long a competitor to Unix. It does share some

similarities with VMS. The interface choice for applications was very interesting, sit

ting on top of a system call interface that looks like Figure 3-2.

Figure 3-2. Architecture of the Win32 API

The idea behind the Windows NT kernel was that it could host several "sub

system" system call interfaces, providing completely different application behavior

from the same underlying kernel. It was meant to be a completely customizable

operating system, providing different kernel
"personalities" any ISV might require.

The DOS subsystem and the (not-shown) 16-bit Windows subsystem were essen

tial, as they provided backward compatibility for applications running on MS-DOS

and 16-bit Windows; the new operating system would have gathered little accep

tance had it not been able to run all the old MS-DOS and Windows applications.

46 A Tale of Two Standards

The OS/2 subsystem was designed to allow users of text mode OS/2 applications

(which was at one time a Microsoft product) to port them to Windows NT.

The two interesting subsystems are the original POSIX subsystem and the new Win32

subsystem. The POSIX subsystem was added, as the POSIX standard had become very

prevalent in procurement contracts. Many of these valuable contracts were available

only to systems that passed the POSIX conformance tests. So Microsoft added a mini

mal POSIX subsystem into the new Windows NT operating system. This original sub

system was, I think it s fair to say, deliberately crippled to make it unuseful for real-

world applications: applications using it had no network access and no GUI access, so

although a POSIX-compliant system might be required in a procurement contract,

there usually was no requirement that the applications running on that system also had

to be POSIX compliant. This allowed new applications using the Microsoft-preferred

Win32 subsystem to be used instead. All might not have been lost if Microsoft had

documented the internal subsystem interface, allowing third-party ISVs to create their

own Windows NT kernel subsystems, but Microsoft kept this valuable information to

itself (there was an exception to this, which I ll discuss shortly).

So, let s examine the Win32 standard API, the interface designed to run on top of the

Win32 kernel subsystem. It would be logical to assume that, like the POSIX system

calls, the calls defined in the Win32 API would closely map to kernel-level Win32

subsystem system calls. But that would be incorrect. It turns out that, when released,

the Win32 subsystem system call interface was completely undocumented. The calls

made from the application-level Win32 API were translated, via various shared

libraries (DLLs in Windows parlance) mainly the NTDLLDLL library into the real

Win32 subsystem system calls.

Why do this, one might ask? Well, the official reasoning is that it allows Microsoft to

tune and modify the system call layer at will, improving performance and adding fea

tures without being forced to provide backward compatibility application binary inter

faces (or ABIs for short). The more nefarious reasoning is that it allows Microsoft appli

cations to cheat, and call directly into the undocumented Win32 subsystem system call

interface to provide services that competing applications cannot. Several Microsoft

applications were subsequently discovered to be doing just that, of course. One must

always remember that Microsoft is not just an operating system vendor, but also the

primary vendor of applications that run on its platforms. These days, this is less of a

problem, as there are several books that document this system call layer, and there are

several applications that allow snooping on any Windows NT kernel calls made by
applications, allowing any changes in this layer to be quickly discovered and pub
lished. But it left a nasty taste in the mouths of many early Windows NT developers

(myself included).

The Win32 (Windows) Standard X 47

The original Win32 application interface was, on the surface, very well documented

and cheaply available in paper form (five books at only $20 each; a bargain com

pared to a POSIX specification). Like most things in Windows, on the surface it looks

great. It covers much more than POSIX tries to standardize, and so offers flexible

interfaces for manipulating the GUI, graphics, sound, and pen computing, as well as

all the standard system services such as file I/O, file locking, threading, and security.

Then you start to program with it. If you re used to the POSIX specifications, you
almost immediately notice something is different. The details are missing. It s fuzzy

on the details. You notice it the first time you call an API at runtime, and it returns

an error that s not listed anywhere in the API documentation. "That s
funny...." you

think. With POSIX, all possible errors are listed in the return codes section of the API

call. In Win32, the errors are a
"rough guide."

The lack of detail is one of the reasons that the Wine project finds it difficult to cre

ate a working implementation of the Win32 API on Linux. How do you know when

it s done? Remember that Linus, with some help, was able to create a decent POSIX

implementation within a few years. The poor Wine developers have been laboring at

this for 12 years, and it s still not finished. There s always one more wrinkle, one

more undocumented behavior that some critical application depends on. Reminds

me of Samba somehow, and for very similar reasons.

It s not entirely Microsoft s fault. It hasn t documented its API because it hasn t

needed to. POSIX was documented in detail due to need: the need of the developers

creating implementations of the standard. Microsoft knows that whatever it makes

the API do in the next service pack, that s still the Win32 standard. "Wherever you

go, there you are," so to speak.

However, the Win32 design does some things very well; security, for instance. Secu

rity isn t the number one thing people think of when considering Windows, but in

the Win32 API, security is a very great concern. In Win32, every object can be

secured, and a property called a Security Descriptor, which contains an ACL, can be

attached to it. This means objects such as processes, files, directories, and even

Windows can have ACLs attached. This is much cleaner than POSIX, in which only

objects in the filesystem can have ACLs attached to them.

So, let s look at a Win32 ACL. As in POSIX, all users and groups are identified by a

unique identifier. On POSIX, it s a uid_t type for users, and a gid_t type for groups.

In Win32, both are of type SID or security identifier. A process or thread in Win32

has a token attached to it that lists the primary SID of the process owner and a list of

secondary group SID entries this user belongs to. Like in POSIX, this is attached to a

process at creation time and the owner can t modify it to give himself more privi

leges. A Win32 ACL consists of a list of SID entries with an attached bit mask identi

fying the operations this SID entry allows or denies. Sounds reasonable, right? But

the devil is in the details (see Figure 3-3).

48 X A Tale of Two Standards

Win32 process token

Owner: SID

Group: SID1

List:

Win32 security desciptor

Owner: SID

Primary group: SID-A I

Access control list:

Deny:[f*]:&lt;bitmask&gt;:
SID 8

Allow: [P]:&lt;bitmask&gt;: SID C

Allow: ff]:&lt;bitmask&gt;: SID D

[f*] represents flags for this entry

Figure 3-3. Win32 access control

Each SID entry in an ACL can be an allow entry or a deny entry. Their order is impor

tant. Reorder a list of entries and swap a deny entry with an allow entry, and the mean

ing of the ACL can change completely. POSIX ACLs don t have that problem because

the evaluation algorithm defines the order in which entries are examined. In addition,

the flags defining the entry (marked as [f*] in Figure 3-3) control whether an entry is

inherited when the ACL is attached to a "container
object" (such as a directory in the

filesystem) and may also affect other attributes of this particular entry.

The bit mask enumerates the permissions that this entry allows or denies. But the

permissions are (naturally) different, depending on what object the ACL is attached

to. Let s look at the kinds of permissions available for a file object:

DELETE

Delete the object.

READ_CONTROL
Read the ACL on an object.

WRITE_DAC
Write the ACL on an object.

FILE_READ_DATA
Read from the file.

FILE_READ ATTRIBUTES

Read file metadata.

FILE_READ_EA
Read extended attributes (if the file has any).

FILE_WRITE_DATA
Write to the file.

FILE_WRITE_EA
Write extended attributes (if the file has any).

The Win32 (Windows) Standard X 49

FILE_EXECUTE

Open for execute (why do we need the . EXE tag then?).

SYNCHRONIZE

A permission related to an open file handle, not the file.

And this is one of the simpler kinds of permission-bearing objects in Win32.

If the Win32 API treats security so seriously, why does Windows fail most security

tests in the real world? The answer is that most applications ignore this wonderful,

flexible security mechanism because it s just too hard to use just like the problem
with the POSIX pathconf () call. No one can use the security mechanism correctly;

applications would degenerate into a mess. It doesn t help that Microsoft, having

realized the APIs controlling security were too difficult to use, keeps adding func

tions to simplify this mess, sometimes also adding new APIs with a new service pack.

In addition, as Microsoft has moved in the "Active
Directory" world, it has extended

the underlying semantics of the security mechanism,adding new flags and behaviors.

Try taking a look at the "file security dialog"
in Windows 2000. It s incomprehensi

ble. No one, especially a system administrator, can keep track of this level of detail

across their files. Everyone just sets one default ACL on the root of a directory hierar

chy and hopes for the best. Most administrators usually want to do two simple things

with an ACL: allow group X but not user Y, and allow group X and also user Z. This

is just about comprehensible with POSIX ACLs, although those are near the limit of

complexity that people can deal with. The Win32 security system is orders of magni

tude more complex than that; it s hopelessly overdesigned. Computer scientists love

it, as it s possible to do elegant little proofs of how secure it is, but in the real world,

it s simply too much to deal with effectively great idea, adding ACLs to every sys

tem object, but a real shame about the execution.

Just to spread the blame around, the networking "experts"
who designed the latest ver

sion of Sun s network filesystem, NFS version 4, fell in love with this security mecha

nism and decided it would be a great idea to add it into the NFSv4 specification. They

probably thought it would make interoperability with Windows easier. Of course, they

didn t notice that Microsoft had been busily extending the security mechanism as Win

dows has developed, so they standardized on an old version of the Windows ACL

mechanism, as Microsoft documented it (not as it actually works). So now, the Unix

world has to deal with this mess or rather, a new network filesystem with an ACL

model that is almost, but not quite, compatible with Windows ACLs, and that is com

pletely alien to anything currently found on Unix. I sometimes feel Unix programmers

are their own worst enemies.

SO X A Tale of Two Standards

The Tar Pit: Backward Compatibility

Now, as an example of where Win32 got things spectacularly wrong, 1 want to look at

a horror from the past that unfortunately got added into the Win32 interfaces due to

the MS-DOS heritage. My pet hate with Win32 is the idea of "share modes" on open
files. In my opinion, this one single legacy design decision has probably done more

than any other to hold back the development of cluster-aware network filesystems on

Win32 systems.

Under POSIX, an open() call is very simple. It takes a pathname to open, the way in

which you want to access or create the file (read, write, or both with various create

types), and a permission mask that gets applied to files you do create. Under Win32,
the equivalent call, CreateFile(), takes seven parameters, and the interactions among
them can be ferociously complex. The parameter that causes all the trouble is the

ShareMode parameter, which can take values of any of the following constants OR ed

together:

FILE_SHARE_READ
Allow others to open for read.

FILE_SHARE_WRITE
Allow others to open for write.

FILE_SHARE_NONE
Don t allow any other opens.

FILE_SHARE_DELETE
Allow open for delete intent.

To make these semantics work, any Windows kernel dealing with an open file has to

know about every other application on the system that might have this file open.
This was fine back in the single-machine MS-DOS days, when these semantics were

first designed, but it is a complete disaster when dealing with a clustered filesystem in

which a multitude of connected file servers may want to give remote access to the

same file, even if they serve out the file read-only to applications. They have to con

sult some kind of distributed lock management system to keep these MS-DOS-inher
ited semantics working. While this can be done, it complicates the job enormously
and means cluster communication on every CreateFile() and CloseHandle() Zcall.

This is the bane of backward compatibility. This idea of "share modes" arbitrating what

access concurrent applications can have to a file is the cause of many troubles on a

Windows system. Ever wonder why Windows has a mechanism built in to allow an

application to schedule a file to be moved, but only after a reboot? Share modes in

action. Why are some files on a Windows server system impossible to back up due to

"another program is currently using this file" errors? Share modes again. There is no

security permission that can prevent a user from opening a file with, effectively, "deny

The Tar Pit: Backward Compatibility
*

51

all" permissions. If you can open the file for read access, you can get a share mode on

it, by design. Consider a network-shared copy of Microsoft Office. Any user must be

able to open the file WINWORD.EXE (the binary file containing Microsoft Word) to exe

cute it. Given these semantics, any user can open the file with READ_DATA access with

the ShareMode parameter set to FILE_SHARE_NONE and thus block use of the file, even

over the network. Imagine on a Unix system, being able to open the /etc/passwd file

with a share mode and deny all other processes access. Watch the system slowly grind

to a halt as the other processes get stuck in this tar pit....

World Domination, Fast

I ve heaped enough opprobrium on Win32. Let s give it a break and consider some

thing the designers really did get right, and one of the advantages it has over POSIX.

I m talking about the early adoption of the Unicode standard in Win32. When
Microsoft was creating Win32, one of the things it realized was that this couldn t just

be another English-only, American- and European-centric standard. It had to be able to

not only cope with, but also encourage, applications written in all world languages

(never accuse Microsoft of thinking small in its domination of the computing world).

Given those criteria, its adoption of Unicode as the native character set for all the sys

tem calls in Win32 was a stroke of genius. Even though the Asian countries aren t

particularly fond of Unicode, because it merges several character sets they consider

separate into one set of code points, Unicode is the best way to cope with the

requirements of internationalization and localization in application development.

To allow older MS-DOS and Win 16 applications to run, the Win32 API is available

in two different forms, selectable by a compiler #define of -DUNICODE (it also helps if

you own the compiler market for Windows, as Microsoft does, as you can standard

ize tricks like this). The older code-page-based applications call Win32 libraries that

internally convert any string arguments to 16-bit Unicode and then call the real

Win32 library interface, which, like the Windows NT kernel, is Unicode only.

In addition, Win32 comes with a full set of library interfaces to split out the text

messages an application may need to display into resource files so that ISVs can eas

ily have them translated for a target market. This eases the internationalization and

localization burdens considerably for vendors.

What is more useful, but not as obvious, is that making the Win32 standard natively

use Unicode meant developers were immediately confronted with the requirements

of multilingual code development. Many applications written in English-speaking (or

Western European eight-bit character set-compatible) countries are badly written,

making the assumption that a character will always fit within one byte. The early ver

sions of Samba definitely made that mistake and retrofitting multibyte character set

52 *J A Tale of Two Standards

handling into old code is a real bear to get right. 1 know, because 1 was the person

who first had to work on this for Samba (later I got some much-needed help from

Andrew), so I may be a little touchy on this subject.

Whenever I did Win32 development, I immediately designed with non-English lan

guages in mind, and wrote everything with the abstract type TCHAR (one of the few

useful abstract types in Win32), which is selectable at compile time using the Uni

code defined to be either wchar_t with Unicode turned on, or unsigned char with

Unicode turned off. Getting yourself in the right multibyte character set mindset

from the beginning eliminates a whole class of bugs that you get when having to con

vert a quick "English-only" hacked-up program into something maintainable for dif

ferent languages. POSIX has been catching up over the years with the iconv() func

tionality to cope with character set conversions, and Sun designed gettext()

interfaces for localization, but Win32 had it all right from the start.

Wither Win32?

As with POSIX, the Win32 standard has not remained static over time. Microsoft has

continued to develop and extend it, and has the advantage that anything it publishes

immediately becomes the "standard," as is the case with all single vendor-defined

standards.

However, Microsoft is attempting to deemphasize Win32 as it moves into its new .NET

environment and the new world of "managed code." Managed code is code running
under the control of an underlying virtual machine (called the Common Language

Infrastructure, or CLI, in .NET) and can be made to prevent the direct memory access

that is the normal mode of operation of an API designed for C coding, such as Win32
or POSIX. Free Software is also making a push into this area, with the Mono project,

which implements the Microsoft C# language and .NET-managed code environment

on Linux and other POSIX systems.

Even if Microsoft is as successful as it hopes to be in pushing ISV programmers to

convert to .NET and managed code using its new C# language, the legacy of applica
tions developed in C using the Win32 API will linger for decades to come. ISV pro

grammers are an ornery lot, especially people who have mastered the Win32 API,
due to its less-than-complete documentation.

What seems to happen over the years is that experienced Win32 programmers gain a

sort of folk knowledge about the Win32 APIs i.e., how they really work versus

what the documentation says. I often hang out on Usenet Windows discussion

groups, and the attitudes of the experienced Windows programmers are very inter

esting: they usually hate telling novices how stuff works. It s almost as if having

learning Windows is a badge of honor, and they don t want to make earning that too

easy for the neophytes. They exude an air of
"they

must suffer as I did."

Wither Win32? X 53

As Microsoft becomes less interested in Win32 with the release of its new Longhorn Win

dows client and the move to managed code, is it possible for Microsoft to lose control of

it? The POSIX standard is so complete because it was designed to allow programmers

reading the standards documents to re-create a POSIX system from scratch. The Win32

standard is nowhere near as well documented as that. However, there is hope in the

Wine project, which is attempting to re-create a version of the Win32 API that is binary

compatible with Windows on Intel x86 systems. Wine is, in effect, a second implementa

tion of the Win32 system, making it closer to a true vendor-independent standard.

Efforts taking place at companies such as CodeWeavers and Transgaming Technologies

are very promising; I just finished playing the new Windows-only game Half-Life 2 on my
desktop Linux system, using the Wine technology. This is a significant achievement for

the Wine code and bodes well for the future.

Choosing a Standard

BETWEEN TWO EVILS, I ALWAYS LIKE TO TAKE THE ONE I VE NEVER TRIED BEFORE.

Mae West

So, what should we choose when examining what standards to support and develop

applications for? What should we recommend to businesses and governments that

are starting to look closely at the open source/free software options available?

It s important that businesses and governments selecting standards-based products

pay attention to open standards. No more of the Microsoft Word .DOC format stan

dard (which suffers from the same problem as Win32 in terms of it being single-ven

dor controlled). No de facto vendor standards, no matter how convenient. They need

to select standards that are at the same level as POSIX namely, standards to the

level that other implementations can be created from the documentation. It s simple

to tell when a standard meets that criterion because other implementations of it exist.

The interesting thing is that both POSIX and Win32 standards are now available on

both systems. On Linux, we have the POSIX standard as native, and the Wine project

provides a binary-compatible layer for compiled Win32 programs that can run many

popular Win32 applications. Perhaps more interestingly for programmers, the Wine

project also includes a Linux shared library, winelib, which allows Win32 applica

tions to be built from source code form on POSIX systems. What you end up with is

an application that looks like a native Windows application, but can be run on non-

Intel platforms; something that early versions of Windows NT used to support, but

now is restricted to x86-compatible processors. Taking your Win32 application and

porting it using winelib is an easy way to get your feet wet in the POSIX world,

although it won t look like a native Linux application (this may be a positive thing if

your users are used to a Windows look and feel).

54

If you ve already gone the .NET and C# route, using the Mono project may enable

your code to run on POSIX systems.

On Windows, there is now a full POSIX subsystem, supported by Microsoft and avail

able for free. Earlier 1 alluded to Microsoft s reluctance to release information on how to

create new subsystems for the Windows NT kernel, but it turns out that earlier in its

history Microsoft was not so careful. A small San Francisco-based company, Softway

Systems, licensed the documentation and produced a product called OpenNT (later

renamed Interix), which was a replacement for Microsoft s originally crippled POSIX

subsystem. Unfortunately, OpenNT didn t sell very well; someone cruelly referred to it

as having "all the application availability of Linux, with the stability of Windows." As

the company was failing, Microsoft bought it (probably to bring the real gem of the

Windows kernel subsystem interface knowledge back in-house) and used it to create

its Services for Unix (SFU) product. SFU contains a full POSIX environment, with a

software development kit allowing applications to be written that have access to net

working and GUI APIs. The applications written under it run as full peers with the

mature Win32 applications, and users can t tell the difference.

Recently Mcrosoft made SFU available as a free download to all Windows users. I

like to think the free availability of Samba had something to do with this, but maybe

I m flattering the Samba team too much. As I like to say in my talks, "If you re into

piloting Samba on Linux in your organization, you re paying too much for your

Microsoft software." But what this means is that if you want to write a completely

portable application, the one standard you can count on to be there and fully imple

mented and supported on Windows, Linux, Solaris, Apple Mac OS X, HP-UX, AIX,

IRIX, and all the other Unix systems out there is POSIX.

So, if you ll excuse me, I m going to look at porting parts of Samba to Windows....

Choosing a Standard ^C 55

t CHAPTER 4

Ben Laurie

Open Source and Security

More than two years ago, in a fit of frustration over the state of open source security,

I wrote my first and only blog entry
1 (for O Reilly s Developer Weblogs):

June and July were bad months for free software. First Apache chunked encod

ing vulnerability,
2 and just when we d finished patching that, we get the

OpenSSH hole. 3 Both of these are pretty scary the first making every single

web server potentially exploitable, and the second makes every remotely man

aged machine vulnerable.

But we survived that, only to be hit just days later with the BIND resolver prob
lems. 4 Would it ever end? Well, there was a brief respite, but then, at the end of

July, we had the OpenSSL buffer overflows. 5

All of these were pretty agonising, but it seems we got through it mostly unscathed,

by releasing patches widely as soon as possible. Of course, this is painful for users

and vendors alike, having to scramble to patch systems before exploits become

available. I know that pain only too well: at The Bunker,6 we had to use every avail-

1
http://www.oreillynet.com/pub/wlg/2004.

2 http://cve.mitre.org/cgi-bin/cvename. cgi?name=CVE-2002-0392.
3

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0639.
4

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0651 .

5
http://cve.mitre.org/cgi-biiticvename.cgi7name~CAN-2002-0656.

6 Back in those days, The Bunker belonged to A.L. Digital Ltd., and it wasn t called The Bunker
Secure Hosting.

"

able sysadmin for days on end to fix t he problems, which seemed to be arriving

before we d had time to catch our breath from the previous one.

But I also know the pain suffered by the discoverer of such problems, so I

thought I d tell you a bit about that. First, I was involved in the Apache chunked

encoding problem. That was pretty straightforward, because the vulnerability

was released without any consultation with the Apache Software Foundation, a

move I consider most ill advised, but it did at least simplify our options: we had

to get a patch out as fast as possible. Even so, we thought we could take a little

bit of time to produce a fix, since all we were looking at was a denial-of-service

attack, and let s face it, Apache doesn t need bugs to suffer denial of service all

this did was make it a little cheaper for the attacker to consume your resources.

That is, until Gobbles7 came out with the exploit for the problem. Now, this

really is the worst possible position to be in. Not only is there an exploitable

problem, but the first you know of it is when you see the exploit code. Then we

really had to scramble. First we had to figure out how the exploit worked. I fig

ured that out by attacking myself and running Apache under gdb. I have to say

that the attack was rather marvelously cunning, and for a while I forgot the

urgency of the problem while I unravelled its inner workings. Having worked

that out, we were in a position to finally fix the problem, and also, perhaps more

importantly, more generically prevent the problem from occurring again

through a different route. Once we had done that, it was just a matter of writing

the advisory, releasing the patches, and posting the advisory to the usual places.

The OpenSSL problems were a rather different story. I found these whilst work

ing on a security review of OpenSSL commissioned by DARPA8 and the USAF.9

OpenSSL is a rather large and messy piece of code that I had, until DARPA

funded it, hesitated to do a security review of, partly because it was a big job,

but also partly because I was sure I was going to find stuff. And sure enough, I

found problems (yes, I know this flies in the face of conventional wisdom

many eyes may be a good thing, but most of those eyes are not trained observ

ers, and the ones that are do not necessarily have the time or energy to check the

code in the detail that is required). Not as many as I expected, but then, I

haven t finished yet (and perhaps I never will, it does seem to be a never-ending

process). Having found some problems, which were definitely exploitable, I was

then faced with an agonising decision: release them and run the risk that I

would find more, and force the world to go through the process of upgrading

again, or sit on them until I d finished, and run the risk that someone else would

discovered them and exploit them.

7 A hacker (or group of hackers, it is not known which).

8 The United States Defense Advanced Research Projects Agency, responsible for spending a great

deal of money on national security in this case, for a thing known as CHATS, or Composable

High Assurance Trusted Systems.

9 Yes, I do mean the United States Air Force.

SB X Open Source and Security

In fact, I dithered on this question for at least a month then one of the prob

lems I d found was fixed in the development version without even being noted

as a security fix, and another was reported as a bug. I decided life was getting

too dangerous and decided to release the advisory, complete or not. Now, you

might think that not being under huge time pressure is a good thing, but in

some ways it is not. The first problem came because various other members of

the team thought I should involve various other security alerting mechanisms

for example, CERT 10 or a mailing list operated by most of the free OS vendors. 11

But there s a problem with this: CERT s process is slow and cumbersome and I

was already nervous about delay. Vendor security lists are also dangerous
because you can t really be sure who is reading them and what their real inter

ests are. And, more deeply, I have to wonder why vendors should have the ben

efit of early notification, when it is my view that they should arrange things so

that their users could use my patches as easily as I can. I build almost every

thing from original source, so patches tend to be very easy to use. RPMs 12 and

ports
13 make this harder, and vendors who release no source at all clearly com

pletely screw up their customers. Why should I help people who are getting in

the way of the people who matter (i.e., the users of the software)?

Then, to make matters worse, one of the more serious problems was reported

independently to the OpenSSL team by CERT, who had been alerted by Defcon. 14

I was going, and there was no way I was delaying release of the patches until after

DeFcon. So, the day before I got on a plane, I finally released the advisory. And
the rest is history.

So, what s the point of all this? Well, the point is this: it was a complete waste of

time. I needn t have agonised over CERT or delay or any of the rest of it. Because

half the world didn t do a damn thing about the fact they were vulnerable, and

because of that, as of yesterday, a worm is spreading through the Net like wild

fire.

Why do I bother?

Two years later, I am still bothering, so I suppose that I do think there s some point.

But there are interesting questions to ask about open source security is it really true

that
"many eyes"

doesn t work? How do we evaluate claims about the respective vir

tues of open and closed source security? Has anything changed in those two years?
What is the future of open source security?

10 CERT is an organization funded to characterize security issues and alert the appropriate
parties a job they do not do very well, in my opinion.

1 1 Apparently, I m not one, so I m not on this list.

12 One of those recursive definitions programmers love: RPM Package Manager, a widely used

system for distributing packaged open source software, particularly for various flavors of Linux.
13 FreeBSD s package management system. Also used by other BSDs.
14 DefCon is a popular hacker s convention, held annually in Las Vegas.

* cqK1 33

Many Eyes

Although it s still often used as an argument, it seems quite clear to me that the

"many eyes" argument,
15 when applied to security, is not true. It is worth remember

ing what was originally said: "Many eyes make all bugs shallow" (Eric S. Raymond). I

believe this is actually true, if read in the right context. Once you have found a bug,

many eyes will, and indeed, do, make fixing it quick and easy.

Security vulnerabilities are no different in this respect once they are found, they are

generally easy to track down and fix (the Apache chunked encoding vulnerability was

the hardest I ve ever had to track, and even that took only one long day s work). But

vulnerabilities aren t like bugs in that sense until they are discovered. Once you find

them, you have a recipe for making the software behave unexpectedly. Until that time,

what do you have? A piece of software that does what you expect.

The idea that bugs and security vulnerabilities are really the same thing is quite

wrong and it s an idea that I suspect has been perpetrated by the reliability commu

nity,
16

sensing a new source of funding. Software is reliable if it does what is

expected when operated as expected. It is secure if it does what is expected under all

circumstances. This is a very critical difference, indeed. Nonsecurity bugs have a sig

nificant qualitative difference from security bugs people don t go out of their way to

find bizarre things to do to make the software go wrong just for the fun of it. And if

they do, and it s not a security hole...well, yes, that s interesting, and we ll fix it one

day but, in the meantime, you didn t need that functionality, so just stop poking

yourself in the eye and it will stop hurting.

What has happened is that advocates of open source have taken the "many eyes"

argument to mean that because the source is available, many people will examine it

for weaknesses. This simply isn t true: most people never look at the source at all

(until it doesn t work), and even if they do, most do not have the experience to find

the problems. The argument simply does not hold water, and it s time we, as a com

munity, abandon it.

However, there is an important sense in which the "many eyes" theory holds a grain

of truth: those who want to look at the source to check for vulnerabilities, can. The

interesting question is whether those who want to look the the code are generally the

good guys or the bad guys. But this is a question I will come to later, when I com

pare open and closed source.

15 The argument is that if enough people look at the code, bugs (and hence security issues) will be

found before they bite you.
16 Academics who study the reliability, as opposed to the security, of computer systems.

60 *C Open Source and Security

Open Versus Closed Source

Since I wrote my rant, Microsoft has decided that security is important (at least for

sales), and as a result, there s been a sudden increased interest in the truth of the

claim that open source is "more secure" than closed source and, of course, the

counterclaim of the opposite.

But this claim is not easy to examine, for all sorts of reasons. First, what do we mean by
"more secure"? We could mean that there are fewer security bugs, but surely we have

to take severity of the bugs into account, and then we re being subjective. We could

mean that when bugs are found, they get fixed faster, or they damage fewer people. Or

we might not be talking about bugs at all. We might mean that the security properties

of the system are better in some way, or that we can more easily evaluate our exposure
to security problems.

I expect that, at some point, almost everyone with a serious interest in this question will

choose one of these definitions, and at some other point a completely different one.

Who Is the Audience?

It is also important to recognize that there are at least two completely different reasons to

ask the question "is A more secure than B?" One is that you are trying to sell A to an

audience that just wants to tick the "secure" box on their checklist, and the other is

because you actually care about whether your product/web site/company/whatever is

secure, and are in a position to have an informed opinion.

It is, perhaps, unkind to split the audience in this way but, sadly, it appears to be a

very real split. Most people, if asked whether they think the software they use should

be secure will say, "Oh yeah, security, that s definitely a good thing, we want that."

But this does not stop them from clicking Yes to the dialog box that says "Would you
like me to install this Trojan now?" or running products with a widely known and

truly dismal security record.

However, it is a useful distinction to make. If you are trying to sell to an audience

that wants to tick the security box, you will use quite different tactics than if the

audience truly cares about security. This gives rise to the kind of analysis I see more
and more. For example, http://dotnetjunkies.com/Weblog/stefandcmetz/archive/2004/10/

ll/28280.aspx has an article titled
"Myth debunking: SQL Server vs. MySQL security

2003-2004 (SQL Server has less
bugs!!)." The first sentence of the article gives the

game away: "Seems that yet again a MS product has less bugs that (sic) the corre

sponding LAMP 17
product." What is this telling us? Someone found an example of a

closed source product that is "better" at security than the corresponding open source

17 LAMP stands for Linux, Apache, MySQL, Perl (or PHP) and is common shorthand for the
cluster of open source commonly used to develop web sites.

Open Versus Closed Source
* *

61

one. Therefore, all closed source products are "better" at security than open source

products. If we keep on saying it, it must be true, right?

Even if I ignore the obviously selective nature of this style of analysis, I still have to

question the value of simply counting vulnerabilities. I know that if you do that,

Apache appears to have a worse record than IIS recently (though not over longer

periods).

But I also know that the last few supposed vulnerabilities in Apache have been either

simple denial-of-service (DoS) attacks 18 or vulnerabilities in obscure modules that

very few people use. Certainly I didn t even bother to upgrade my servers for any of

the last half-dozen or so; they simply weren t affected.

So, for this kind of analysis to be meaningful, you have to get into classifying vulner

abilities for severity. Unfortunately, there s not really any correct way to do this.

Severity is in the eye of the beholder. For example, my standard threat model (i.e.,

the one I use for my own servers, and generally advise my clients to use, at least as a

basis) is that all local users 19 have root,
20 whether you gave it to them or not. So,

local vulnerabilities21 are not vulnerabilities at all in my threat model. But, of course,

not everyone sees it that way. Some think they can control local users, so to them,

these holes matter.

Incidentally, you might wonder why I dismiss DoS attacks; that is because it is essen

tially impossible to prevent DoS attacks, even on perfectly functioning servers, since

their function is to provide a service available to all, and simply using that service

enough will cause a DoS. They are unavoidable, as people subject to sustained DoS

attacks know to their pain.

Time to Fix

Another measure that I consider quite revealing is "time to fix" that is, the time

between a vulnerability becoming known and a fix for it coming available. There are

really two distinct measures here, because we must differentiate between private and

public disclosure. If a problem is disclosed only to the "vendor,"
22 the vendor has the

leisure to take time fixing it, bearing in mind that if one person found it, so will others

18 In a DoS attack, the attacker prevents access by legitimate users of a service by loading the

service so heavily that it cannot handle the demand. This is often achieved by a distributed

denial of service (DDoS) attack, in which the attacker uses a network of "owned" (i.e., under the

control of the attacker and not the legitimate owner) machines to simultaneously attack the

victim s server.

19 That is, people with user accounts on the machine, rather than visitors to web pages or people
with mail accounts, for example.

20 Root is the all-powerful administrative account on a Unix machine.

21 A local vulnerability is one that only a local user can exploit.

22 A term I am not at all fond of, since, although I am described as a "vendor" of Apache,

OpenSSL, and so forth, I ve never sold any of them.

62 X Open Source and Security

meaning "leisure" is not the same as "forever," as some vendors tend to think. The time

to fix then becomes a matter of negotiation between vendor and discloser (an example of

a reasonably widely accepted set of guidelines for disclosure can be found at http://www.

wiretrip.net/rfp/policy.html, though the guidelines are not, by any means, universally

accepted) and really isn t of huge significance in any case, because the fix and the bug
will be revealed simultaneously.

What is interesting to measure is the time between public disclosures (also known as

zero-days) and the corresponding fixes. What we find here is quite interesting. Some

groups care about security a lot more than others! Apache, for example, has never, to

my knowledge, taken more than a day to fix such a problem, but Gaim23 recently left

a widely known security hole open for more than a month. Perhaps the most inter

esting thing is that whenever time to fix is studied, we see commercial vendors Sun

and Microsoft, for example pitted against open source packagers Red Hat and

Debian and the like but this very much distorts the picture. Packagers will almost

always be slower than the authors of the software, for the obvious reason that they
can t make their packages until the authors have released the fix.

This leads to another area of debate. A key difference between open and closed

source is the number of "vendors" a package has. Generally, closed source has but a

single vendor, but because of the current trend towards packagers of open source,

any particular piece of software appears, to the public anyway, to have many differ

ent vendors. This leads to an unfortunate situation: open source packagers would

like to be able to release their packages at the same time as the authors of the pack

ages. I ve never been happy with this idea, for a variety of reasons. First, there are so

many packagers that it is very difficult to convince myself that they will keep the

details of the problem secret, which is critical if the users are not to be exposed to the

Bad Guys. Second, how do you define what a packager is? It appears that the critical

test I am supposed to apply is whether they make money from packaging or not! 24

This is not only blatantly unfair, but it also flies in the face of what open source is all

about. Why should the person who participates fully in the open source process by

building from source be penalized in favor of mere middlemen who encourage peo

ple not to participate?
25

Of course, the argument, then, is that I should care more about packagers because if

they are vulnerable, it affects more people. I should choose whom I involve in the

release process on the basis of how many actual users will be affected, either posi-

23 A popular open source instant messaging client.

24 Of course, not all packagers make money, but I ve only experienced this kind of pressure from
those that do.

25 This is because vendors tend to encourage users to treat them as traditional closed source
businesses with their own support, their own versions of software, and so forth instead of

engaging the users with the actual authors of the software they are using.

Open Versus Closed Source *C 63

lively or negatively, depending on whether I include the packager or not, by my
choice. I should also take into account the importance of these users. A recent argu

ment has been that I should involve organizations such as the National Infrastruc

ture Security Co-ordination Centre (NISCC), a UK body that does pretty much what

it says on the tin, and runs the UK CERT (see http://www.niscc.gov.ufe for more infor

mation) because they represent users of more critical importance than mere mortals.

This is an argument I actually have some sympathy with. After all, I also depend on

our infrastructure. But in practice, we soon become mired in vested interests and

commercial considerations because, guess what? Our infrastructure uses software

from packagers of various kinds, so obviously I must protect the bottom line by mak

ing sure they don t look to be lagging behind these strange people who give away

security fixes to just anyone.

If these people really cared about users, they would be working to find ways that

enable the users to get the fixes directly from the authors, without needing the pack

ager to get its act together before the user can have a fix. But they don t, of course.

They care about their bank balance, which is the saddest thing about security today:

it is seen as a source of revenue, not an obligation.

Incidentally, a recent Forrester Research report claims that packagers are actually

quite slow as slow as or slower than closed source companies at getting out fixes.

This doesn t surprise me, because a packager generally has to wait for the (fast!)

response of the authors before doing its own thing.

Visibility of Bugs and Changes

There is argument that lack of source is actually a virtue for security. Potential attack

ers can t examine it for bugs, and when vulnerabilities are found, they can t see what,

exactly, was changed.

The idea that vulnerabilities are found by looking at the source is an attractive one,

but is not really borne out by what we see in the real world. For a start, reading the

source to anything substantial is really hard work. I know I did it for OpenSSL, as I

said earlier. In fact, vulnerabilities are usually found when software misbehaves,

given unusual input or environment. The attacker follows up, investigating why that

misbehavior occurred and using the bug thus revealed for their own evil ends. The

"chunked encoding" bug I mentioned earlier is a great example of this. This was

found by the common practice of feeding programs large numbers of the same char

acter repeatedly. When Apache was fed A lots of times, it ended up treating it as a

count of characters in hex, and it came out negative, which turns out to be a Bad

Thing. In this case, all that was needed was eight characters, but the problem was

found by feeding Apache several thousand. 26

26 This particular method is popular because it is so easy: perl -e
"print

"A xlOOOO"
| target.

64 xx Open Source and Security

So, not having the source might slow down an attacker slightly, but given the avail

ability of excellent tools like IDA (a very capable disassembler) and Ollydbg (a pow
erful [and free! debugger), not by very much.

What about updates? The argument is that when source is available, the attacker can

compare the old and new versions of the source to see what has changed, and then use

that to craft software that can exploit unfixed versions of the package. In fact, because

most open source uses version control software, and often has an ethos of checking in

changes that are as small as possible, usually the attacker can find just the exact

changes that fixed the problem without any clutter arising from unrelated changes.

But does this argument hold water? Not really, as, for example, Halvar Flake has

demonstrated very clearly with his Binary Difference Analysis tool. What this does is

take two versions of a program, before and after a fix, disassembles them, and then

uses graph isomorphisms to work out what has changed. I ve seen this tool in action,

and it is very impressive. Halvar claims (and I believe him) that he can have an

exploit out for a patched binary in one to eight hours from seeing the new version.

Review

Another important aspect to security is the ability to assess the risks. With closed

source, this can be done only on the basis of history and reputation, but with open

source, it is possible to go and look for yourself. Although you are not likely to find

bugs this way, as I stated earlier, you can get a good idea about the quality of the

code, the way it has been written, and how careful the author is about security. And,

of course, you still have history and reputation to aid you.

Who s the Boss?

Finally, probably the most important thing about open source is the issue of who is

in control. When a security problem is found, what happens if the author doesn t fix

it? If the product is a closed source one, that generally is that. The user is doomed.

He must either stop using it, find a way around the problem, or remain vulnerable.

In contrast, with open source, users are never at the mercy of the maintainer. They
can always fix the problem themselves.

It is often argued that this isn t a real choice for end users; usually end users are not

programmers, so they cannot fix these problems themselves. This is true, but it com

pletely misses the point. Just as the average driver isn t a car mechanic but still has a

reasonably free choice of who fixes his car,
27 he can also choose a software maintainer

to fix his software for him. In practice, this is rarely needed because (at least for any

widely used software) there s almost always someone willing to take on the task.

27 This is a metaphor that is rapidly going out-of-date, as car manufacturers make cars more and
more computerized and harder and harder for anyone not sanctioned by the manufacturer to

work on. Who knows perhaps this will lead to an open source culture in the car world.

Open Versus Closed Source X 65

Digression: Threat Models

I mentioned threat models earlier. Because not all my readers will be security experts,

it is worth spending a moment to explain what I mean. When you evaluate a threat

to your systems, you have to have a context in which to do it. Simply saying "I have a

security hole" tells you almost nothing useful about it. What you want to know is

how bad it is, how fast you have to fix it, what it will cost if you don t fix it, and what

it will cost if you do fix it.

To make that assessment, there are various things you need to know. The obvious

ones are what systems you are running; what the value of each component is; what

impact the vulnerability will have on each component; how likely you are to be

attacked; and so forth. But less obvious is the question of whether you actually care

about the attack at all and this is where threat models come in. They characterize

what you have already assumed yourself to be vulnerable to and how you are vulner

able it.

So, as I mentioned, my threat model is that local users have root. Because root can

do, essentially, anything she wants, this means that any vulnerability that can only be

exploited by a local user, no matter what it is, and no matter how bad, is irrelevant to

me. They could do that already.

Threat models can get quite complicated, and you may well find that when a new

vulnerability comes along, you have to consider what your model actually is, because

you don t already know. For example, suppose there s an attack on the domain name

service that allows it to be faked. Do you care? Was that something you assumed had

to be correct when you built your system, or is incorrectness merely a nuisance?

Anyway, I don t want to turn this chapter into a textbook on security, so suffice it to

say that threat models are important, everyone s is different, and you can t evaluate

the impact of vulnerabilities without one which means, really, that the whole ques

tion of which is better is one only you can answer.

The Future

PREDICTION is DIFFICULT, ESPECIALLY ABOUT THE FUTURE.

Niels Bohr/Mark Twain28

There are two futures: the one we should have, and the one we re going to get. I ll

talk about the one we should have first, because it s more fun, more interesting, and

definitely more secure.

28 Apparently it s difficult about the past too we don t know which of these people said this!

66 X Open Source and Security

Today s operating systems and software are based on decades of experience with

developing software that was run by nice guys on machines over which they con

trolled access relatively easily (whether as users or nonusers interacting with the

machine or software in some way). This was a world where your biggest security
threat was a student playing a prank. We learned a great deal about how to write

software that did clever things, was easy to use, and had pretty interfaces.

Unfortunately, we learned almost nothing about how to write secure software. And
in the meantime, we built up a huge amount of insecure software. Worse, we used

insecure languages to write the insecure software in. And worse even than that, we
used languages thath there s no real prospect of securing. And we continue to use

them, and the same insecure operating systems we wrote, with ever-increasing teeter

ing towers of software piled on top of them.

So, in my Brave New World, we get smart enough to scrap all this and use an idea

invented in the 1960s: capabilities. Unfortunately, academics decided very early on that

capabilities had all sorts of problems, and this has prevented their widespread adoption.
Mark Miller and Jon Shapiro, in

"Paradigm Regained: Abstraction Mechanisms for

Access Control"
(http://w\vw.erights.org/talks/asian03/paradigm-revised.pdf), have very

effectively debunked these criticisms, though I have to admit to being bemused by how
anyone could believe them in the first place, since they are so easily solved.

In any case, there are still some of us around who believe in capabilities, and I enter

tain the fond hope that we may start using them on a larger scale. The foremost

project using capabilities at the moment is the E language (http://www.erights.org),

which, as well as being a capability language from the ground up, has some very nice

features for distributed computing, and is well worth a look. Unfortunately, I do not

believe a language with such esoteric (and ever-changing) syntax will ever be widely
used. It seems that privilege belongs to a very few. Perhaps more promising from the

point of view of likelihood of adoption is my own nascent CAPerl (think "Kapow!")

project, which adds capabilities to Perl. Although this is far less elegant and satisfy

ing, it has the virtue of looking almost exactly like Perl to the experienced program
mer, and so I do have some hope that it might actually get used. I don t have a web
site for it yet, so I invite you to Google for it.

No discussion of capabilities in the 21st century would be complete without men
tioning EROS (http://www.eros-os.org). Funnily enough, EROS is short for Extremely
Reliable Operating System, since its author, Jon Shapiro, thought that was what was

important about it when he started writing it. Now, though, we are far more inter

ested in its security properties than in its
reliability. EROS, like E, implements capa

bilities from the ground up. More importantly, it runs on PCs. Unfortunately, it

seems it is a project that won t be finished. Work is, however, starting soon on the

second attempt.

The Future JJ 67

Of course, if I really think this will happen, I m on crack. Not enough people care

enough about security to contemplate throwing everything away and starting again

(make no mistake, that s what it takes). But I can (and do) hope that people will start

writing new things using capabilities. And I hope that drawing them to your atten

tion will assist that.

Now I ll move on to what I think will really happen. Certainly people have become

more aware of security as an issue, and the increasing use of open source in corpo

rate environments also increases the pressure on security. It seems likely that this will

drive open source toward better ways to deliver updates faster. I don t think it is

actually possible to drastically improve open source s record on fixing security issues.

I believe that by any measure, that open source is ahead of closed source. But the

flow from author to end user is not yet a smooth one.

Interestingly, the fix for that is strongly related to the fix for another widely acknowl

edged problem with open source: package management systems. We do not yet have

the ultra-smooth systems to handle installation and update of systems in a way that

makes it a no-brainer for end users. Open source and closed source present interest

ingly different problems. Open source packages of any complexity tend to depend on

other open source packages, usually with a completely different set of authors and

release cycles. Managing installation in this environment is much harder than in the

closed source situation, where one vendor even one that buys components from

others is in control of the whole package. I think the open source world is moving
toward better package management, and this will automatically improve the end

user s management of security.

However, for corporate environments, this probably makes little difference. In such

situations, there are almost always elaborate procedures for rolling out new versions

which are almost unchanged when using open source. Even so, clearer visibility of

dependencies and, therefore, what needs to be upgraded when a fix comes out,

would be useful.

I also hope that better package management would reduce the dependency of users

(at least, if they choose to have their dependency reduced) on packagers. Although

packagers, in theory, add value, they also add latency. Perhaps worse, they damage
the open source model by introducing dozens of slightly different versions of each

package, through the widespread practice of applying patches to the packages

instead of contributing them back to the original authors, which reduces the effec

tiveness of community development by splitting the community into many smaller

subcommunities .

As always, there is a price to be paid for better package management. Automated

updates are a fantastic vector to mount automated attacks. We know well how to

prevent such attacks using public key cryptography, but once more, the complexity

88 X Open Source and Security

of multiple authors introduces problems of key management to which there aren t

really good answers, at least, so far. 29

One thing that does seem certain is that the increasing trend of concern about secu

rity by end users will continue. The seemingly never-ending rise of spam, adware,

and Trojans, if nothing else, has put it on everyone s agenda, and that doesn t seem

likely to change.

Interesting Projects

I ve already mentioned some projects in passing, but no chapter on open source

security would be complete without mentioning some of the more interesting

projects out there. I ll start with the obvious ones and move on to the more esoteric.

This list probably reflects my current obsession with privacy and anonymity:

OpenSSL
Well known, but still essential. This library implements most known crypto

graphic algorithms, as well as the SSL and TLS protocols. It is very widely used

in both free and non-free software, and at the time of this writing was in the final

stages of obtaining FIPS-140 certification, http://www.openssl.org.

Apache 2

Of course, we ve all known and loved Apache for years. Finally, Apache 2 has

HTTPS support out of the box. http://www.apache.org.

Mozilla

A suite of web browser, mail, and news reading software, and related utilities.

You probably don t think of this as security software, but it is probably second

only to Apache in the number of financial transactions it protects. And it does it

with a minimum of fuss. What s more, it isn t plagued with its closed-source

rivals fondness for installing evil software you never intended to install! http.7/

www.mozilla.org.

GnuPG

Implementing the OpenPGP standard under the GPL. Primarily used for email,

but also the mainstay for validation of open source packages (using, of course,

public key cryptography), http://www.gnupg.org.

Emgmail

Small, but (almost) perfectly formed. This is a plug-in for the increasingly popu
lar (and, of course, open source) email client, Thunderbird, providing a nicely

streamlined interface for GnuPG. http://enigmail.mo2dev.org.

29 1 should perhapsat this point plug KeyMan, a package I designed to solve this problem, but
since it has singularly failed to take off, that might be inappropriate.

Interesting Projects X 69

CVE

Common Vulnerabilities and Exposures. This is a database of security problems,
both commercial and open source. The idea is to provide a uniform reference for

each problem, so it s easy to tell if two different people are talking about the

same bug. http://cve.mitre.org.

TOR

The onion router. Onion routing has been a theoretical possibility for a long

time, providing a way to make arbitrary connections anonymously. Zero Knowl

edge Systems spectacularly failed to exploit it commercially, but now it has come

from a most unlikely source: the U.S. Navy. The Navy s funding recently ran out,

but the Electronic Frontier Foundation stepped up to take over. Well worth a

look, http://tor.eff.org.

Conclusion

In the end, it seems to me there s little to be sensibly said that, from the viewpoint of

security, truly differentiates between open and closed source. The points I believe are

critical are my ability to review the code for myself and my ability to fix it myself when

it is broken. By "myself I do, of course, include "or anyone of my choice." What I don t

believe in at all is the often-quoted but never-proven "many eyes" theory.

In the digression on threat models, I mentioned that the only person who can really

answer the question of whether open source is better for security is you. Leave the

camp of people who think security is a good thing that we should all have more of,

and join the camp of people who have thought about what it means to them, what

they value, and so, what they choose.

70 X Open Source and Security

b CHAPTER 5

Michael Olson

Dual Licensing

Over the past decade, there have been many attempts to commercialize open source

software. One common strategy has been to create services businesses, which offer

consulting and support to users of open source. Another strategy has been to build

hybrid businesses, which distribute open source platforms with proprietary add-ons,
and which make money by licensing the add-ons.

A third strategy, and the focus of this chapter, is called dual licensing. Companies that

use dual licensing provide a single software product under two different licenses.

One license, which imposes open source terms, is available to a certain class of users.

A second license, with proprietary terms, is available to others.

Business and Politics

This chapter is about business. Software is deep in the modern economy: it provides
the mechanism for the flow of capital around the world, and it is itself a good that

can be produced, bought, and sold. Whenever something interesting happens in the

world of software, business leaders pay attention.

Open source is interesting. It enforces new rules for use and distribution of software

products. It changes the economics of software production. It impacts the way that

companies can capitalize on the software they control.

At the same time, though, open source has no business agenda. Open source is about

freedom in the political sense. It is about peer review and scientific collaboration.

Open source licenses take no position whatsoever on the profitability of business

models. Open source is not antibusiness; it has no opinion.

Businesspeople, of course, have opinions on open source. Some years ago, when

open source was still new to the business community, it was unfamiliar, and that

unfamiliarity bred fear, confusion, and opposition. More recently, as quality open
source software products have proven their value to all kinds of businesses, that

opinion has shifted. Most businesspeople who have thought about open source at all

are guardedly interested in it, and want to find ways to use it in their companies to

be more efficient, to spend less, or to earn more.

An informed opinion on open source is important. Just as software is a powerful eco

nomic force, open source is a powerful force in the development and deployment of

modern software systems. The Internet, including the World Wide Web, and a wide

range of the services that run on it (for example, e-commerce sites such as Amazon.com;
information retrieval services such as Google; and portals such as Yahoo!) exist because

of open source software. Open source is a genie that is too big for its bottle. Now that it

is out, it will not fit back in. If you do not put it to work for you, it is likely to wreak bad

magic on your business.

My own opinion on open source is simple. It is one tool among many that can, when

used sensibly, create business value. I run a business based on open source, but my
agenda is commercial, not political. I understand the politics behind open source,

and I appreciate and respect many smart people in the open source community.
When I sit down at my desk, though, I am more interested in the difference between

income and expenses on my profit and loss statement. To the extent that open source

helps move that difference in the right direction, I care deeply about it.

The open source business strategy about which I know the most and the focus of this

chapter is called dual licensing. Dual licensing is a way to make a single software prod
uct available under two different licenses. One is an open source license, and encour

ages sharing and collaboration. The other is a more conventional proprietary license,

and permits secrecy and competition which promote the creation of proprietary value.

Dual licensing is a way to give a single product to open source users on open source

terms, and to paying proprietary customers on conventional proprietary terms.

Open Source: Distribution Versus Development

Open source can include a distribution strategy or a development strategy. While

people often think of the development strategy (many programmers working on a

common project) when they think of high-profile projects like Linux, we are instead

going to focus on the distribution strategy.

72 X Dual Licensing

Open source is just a way to put product in many users hands inexpensively. Dual-

licensing businesses do not use collaborative development to build their products. In

fact, as we will see, that production strategy is poisonous to dual-licensing businesses.

A dual-licensing business can take advantage of the cheap and ubiquitous Internet to

distribute its products at low costs. Open source licensing promotes use at much
lower cost, with much less friction, than an expensive marketing campaign could do.

Dual-licensing businesses can distribute software to more people, more cheaply, than

their proprietary competitors.

At the same time, dual licensing permits these businesses to generate revenue by licens

ing the software to certain users for a fee. Software licensing revenue is good revenue

because you can make and license a second copy of a piece of software for essentially

no additional cost, businesses and the financial markets like licensing revenue. Selling

support or services, by contrast, imposes new costs with every deal, because a business

must have the capacity to answer the telephone for every new customer it captures. As
a result, licensing-based businesses, including dual-licensing businesses, generally get

higher valuations and can raise capital more cheaply than businesses based exclusively
on services.

A Primer on Intellectual Property

Dual licensing, when you first encounter it, can seem like a parlor trick. How can I

possibly charge money for software that you can get for free?

There is, in fact, no sleight of hand. Nobody gets tricked. Dual licensing requires
some care, and the same diligence that most businesspeople bring to their jobs, but it

turns out that governments around the world want businesses to be able to do this.

They have constructed legal infrastructures that permit all sorts of businesses to

make money with confidence. All it takes is to behave like a business and comply
with the law.

Understanding the mechanism here is easier with some background in intellectual

property law. Most software vendors make money by charging fees for an intangible

product algorithms and their implementations as expressed in computer code. All

these businesses, including dual-licensing businesses, exist because of crucial legal con

cepts regarding intellectual property concepts such as ownership and license grants.

Ownership

Ownership of real property is easy to understand my ball, your house, her island.

Ownership of something intangible like the expression of ideas, is harder to under
stand. Over several centuries, governments have created rules about who may and

may not make copies of artifacts like books and music. This
"copyright"

law bal
ances the interests of the creator of a work an author or a composer with the

A Primer on Intellectual Property X 73

interests of consumers who purchase those copies. Copyright law clarifies issues and

resolves disputes among authors and readers. Copyright law has been adapted to

apply to software, balancing the rights of software authors with those people who

license and use their computer programs.
1

Copyright law worldwide generally says that the creator of an expression of an idea

owns that expression. From the point of view of a computer programmer, this means

that whoever writes a program owns the program. If the programmer copied parts of

it from somewhere else, of course, he was not the creator of those parts, and he does

not own them.

Unless the owner expressly assigns his rights to someone else, he owns his creation.

Most employment agreements include just such an assignment provision, so the code

a programmer writes for his job instantly becomes the property of his employer. The

Free Software Foundation, an important organization in the free software move

ment, requires such assignment for any contribution to projects that it manages.

Without an explicit assignment, there can be many different owners of a large soft

ware product. This is exactly the case with many open source projects, including

Linux. If 10 developers collaborate on an open source package, each of the 10 owns

the pieces she produced. None of them owns the entire work.

Licensing

Except in very rare circumstances, no one ever buys computer software. The person

who created the work is its owner; a purchaser only buys certain rights to use the

copy of the software in his possession. This distinction is critical to businesses that

build software products. These businesses do not sell ownership. Instead, they sell

licenses to the software, where "licenses" generally means a collection of rights to

copy, run, and use the software product.

The owner is allowed, under the law, broad latitude to set conditions on use of the

software. If someone wants a license to use the software, the owner can require that

person to do any number of different things in exchange for the license.

Most proprietary software vendors require payment of a fee. This has been a remark

ably successful business strategy for many decades, producing a number of billion-

dollar software companies.

Open source software licensing does not require payment of a fee. The owners of

open source software do impose other conditions on their open source licensees.

1 The bodies of law dealing with trade secrets and patents are also both important to businesses,

but are beyond the scope of this discussion. Patents in particular complicate open source

software development and distribution, and are something of a lightning rod in the debate

between proponents and opponents of open source.

74 xx Dual Licensing

Those conditions vary, depending on the open source license in use, but two broad

categories are most common:

Reciprocal licenses require that any recipient promise to contribute back any

changes or additions to the software. Reciprocal licenses are coercive; they essen

tially enforce sharing. The most common reciprocal license in use is the GNU
General Public License, or GPL.

Academic licenses usually require very little often, just acknowledgment of the

original owner s work on the software. Academic licenses encourage reuse of

other programmers work by making it available on liberal terms. The most pop
ular academic license in use is the Berkeley Software Distribution, or BSD,
license.

In both the proprietary and open source cases, the owner of the software sets the

conditions that others must meet to use the software.

The owner is allowed to set different conditions for different people. This same situa

tion applies to real property: you might allow your brother to sleep in your spare
bedroom for free, but probably would not let me do that on the same terms. At best,
I could hope to pay you rent for use of the room. Likewise, the owner of a piece of

software can grant different rights, on different terms, to different people.

This is common in proprietary software businesses. For example, if you buy a com
puter with an operating system and a word processor installed, you are most likely

permitted to use those packages, but not to make copies of them for others to use. By
contrast, the computer manufacturer is allowed to copy, install, and distribute both

pieces of software to you and to others. The company that owns the operating sys
tem and word processor chooses to grant the computer manufacturer broader rights
than you have, because the owner s goal is to make money in business, and creating a

distribution channel that generates license fees is a good way to do that.

The fundamental point to remember is that open source licensing rests on the same
foundation that proprietary software businesses use for their own licensing: copy
right law and the notions of ownership and licensing that inform it. In both the pro
prietary and open source cases, the owner grants licenses to use the software under
certain conditions.

One main benefit of being an owner is having the right to set those conditions.

Dual Licensing

Dual licensing exploits these attributes of copyright law to construct profitable busi
nesses using open source software. The software s owner distributes a single product
under both an open source license and a proprietary license. Open source licensees

pay no fees, but make certain promises. Proprietary licensees have different rights,
and pay a fee for that consideration.

Dual Licensing
*

75

By making the software available on open source terms, the owner creates a large and

inexpensive distribution channel. Generally, users can download the software on the

Internet for free. In many cases, the software is bundled with third-party offerings,

and is distributed by others not formally affiliated with the owner. Open source dis

tribution makes the software ubiquitous, putting it in the hands of many users at

very low cost.

Reciprocity

Open source, as it has emerged from the academic world, emphasizes the importance

of reciprocity. Fundamentally, everyone in the community is allowed to share the bene

fits of the code that others have written. Everyone is expected to share their work, how

ever. If you give me your work for free, I reciprocate and give you my work on the

same terms. This emphasis on reciprocity encourages collaboration and allows the

community to build better software than any small group could on its own.

In a dual-licensing business, the open source license demands reciprocity. If a cus

tomer uses the software under the open source license, his own additions which

may well include the code for his own product must be open source, as well.

Under the proprietary license, by contrast, reciprocity is not required. The cus

tomer s own code, and any changes or additions he makes to the original product,

can remain proprietary.

This distinction between the two licenses is crucial. Sharing source code is a virtue in

the open source community, but is a serious competitive disadvantage in many com

mercial settings. Proprietary software vendors would much rather pay money than

give away the competitive advantage inherent in their source code.

Warranty

A warranty is a promise. These promises are the bedrock of most commercial rela

tionships. Software vendors that use proprietary licenses to do business with their

customers and suppliers use warranties to spell out clearly what each party expects

from the other.

As a software vendor, I might warrant that my software product will work as docu

mented, and that I will fix any errors if it does not. I will generally warrant that I

wrote the software, and that I am the person who owns it. I may ask my customer to

warrant that he will not give my software away for free to anyone else. If either of us

breaks one of these promises, our licensing agreement will usually spell out the steps

that the other party can take to fix the problem. If we cannot fix the problem, either

of us can sue the other in court for breakingthe promise.

76 X Dual Licensing

People do not generally make promises casually. There are real costs in keeping your
word. For example, if I have promised that my software works, and it does not, I

need to spend time, and possibly money, to fix it.

Virtually all open source licenses and certainly all those used by dual-licensing

businesses are "as is" licenses, with no warranties, no promises, and no recourse in

the event of problems. The user gets the software as is, and assumes all risk in using

it. This allows the business to minimize business risk from users of its software who
did not pay a license fee. Put simply, if the user does not pay for the license, the

owner will not use his money to protect the user in the case of a problem.

Proprietary licenses, by contrast, generally include clear warranties. A company can

afford to make promises to its paying customers, because it can use some of the

money paid to defray the costs of keeping the promise.

Depending on how a customer plans to use a software package, he may or may not

be able to tolerate the "as is" nature of an open source license. If the customer is will

ing to risk problems in the software, and to fix those problems himself, the open
source license is fine. On the other hand, if the customer plans to ship the software

to customers of his own, he may want the assurance of a committed partner behind

him. Likewise, if the customer runs mission-critical infrastructure on open source

software, he may need the confidence that commercial warranties provide.

Competitive Issues

Many vendors that consider dual-licensing strategies are concerned with competition.

Naturally, open source distribution presupposes that there are no valuable propri

etary techniques in the software that need to be kept secret. If an owner distributes a

software package in source form, competitors can read the source code, just like any
other person who receives a copy.

This seems at first like it should be a major concern, but in point of fact, the amount
of innovation in the software market is much smaller than is generally supposed.

Especially in relatively mature sectors of technology, such as operating systems and

databases, the techniques and algorithms are well understood by all the suppliers
The combination of particular techniques that any single vendor uses may be some
what interesting to its competitors. All of the vendors in a market hire from the same

pool of technical talent, and even poach employees from one another. As a result,

most vendors know pretty well how their competitors products work.

Proprietary vendors will naturally claim that their products are novel and innova

tive, and must be kept secret. The problem is that there is no way to test this asser

tion, since doing so requires examination of the source code, and that is precisely
what the vendors cannot permit, yet still protect their market positions.

Dual Licensing X 77

In some cases, these claims are no doubt true. The strategy of concealment, however,

does not distinguish between ugliness and beauty, and may be used to hide either.

A different competitive concern arises from confusion between ownership and licens

ing. Some vendors considering dual licensing worry that their competitors will

download the open source version of the product and license it under proprietary

terms to others. In effect, this would allow a competitor to use the vendor s own

product to compete with him.

Copyright law, of course, prohibits this. Only the owner has the right to grant pro

prietary licenses to the software. In fact, no competitor can copy pieces of the work

into its own products, since those products would then be forced to comply with the

terms of the open source license.

There is another, subtler, force that protects dual-licensing vendors from unscrupu
lous competition. Open source software is preemptive: the existence of a quality

open source package makes it very difficult or impossible to introduce a for-fee com

petitor. The cost of building such a competitive offering has to be recovered some

how. If a no-cost offering is available, selling an alternative for a fee will likely fail.

The result is that very few businesses are willing to challenge open source software in

the market once it is established.

The converse, of course, is not true. Open source frequently, and aggressively, chal

lenges established proprietary software.

Even in cases where proprietary alternatives exist, dual licensing creates competitive

advantage. The open source product is ubiquitous as a result of an inexpensive distri

bution channel. In addition, the fact that many users are able to use the software at

no charge actually takes money away from purely proprietary vendors in the market.

If a user can choose between a good open source product for free, and a competitive

proprietary product for a fee, the for-pay competitive vendor is likely to lose the sale.

Dual-licensing vendors are not paid by their open source users. Neither, however,

are their competitors.

Ownership

Only the owner of a work has the standing to offer it to different users under differ

ent licenses. As a consequence, dual licensing works only if there is a single, well-

defined owner of a work. Otherwise, customers have no single entity with whom to

negotiate their license terms. In practice, projects that use the open source develop

ment model (a large community of independent programmers collaborating on a

work) are poor candidates for dual licensing. There are just too many contributors to

contact for permission every time a new customer wants to license the software

under non-open source terms.

78 J* Dual Licensing

As a result, dual-licensing businesses do not use the open source development model.

Instead, they invest in the development of the open source software and do not accept

contributions from the community at large. Dual-licensing businesses rely on open
source as a distribution strategy, not as a production strategy.

Ownership is an issue in the larger open source community, of course. As a practical

matter, assessing the provenance of contributions to an open source project is hard.

Individual contributors are often judgment-proof, and ensuring that they have not

misappropriated the intellectual property they contribute to the project requires real

diligence. Projects manage this problem the same way that proprietary vendors do

they put experienced managers over coders to review contributions, and they rely on

mature and experienced contributors to build the product.

In fact, this ownership issue cuts both ways. Proprietary vendors are equally at risk

from employees who take pieces of open source software and incorporate it into the

proprietary products that their employers build.

The answer for both proprietary and open source developers, of course, is to set up
formal policies and standards on intellectual property use. Diligence is simply part of

the job. Both proprietary and open source developers can and do write large, sophis
ticated products without stealing from others.

Practical Considerations

Dual licensing works. Using it, businesses can generate revenue based on license fees

paid for copies of software. Because the public markets view this revenue as inher

ently lower margin than services revenue, dual-licensing companies have attractive

valuations and can raise capital at parity with proprietary software vendors.

Attractive Margins

Every sustainable business must consistently earn more money than it spends. This is

often hard.

One of the key considerations in designing a new business is the margin that the rev

enue stream can produce. Margin is, at base, the percentage of revenue that is profit.

If you pay $100 to build a widget, and you pay a salesperson $100 to sell it, the wid

get costs you $200. If you charge $400 for it, you have an attractive margin 50%. If

you charge $205 for it, you have a very thin margin 2.5%.

Most technology businesses sell licenses, or services, or a mixture of the two. For exam

ple, a company might license its product to customers, and might also sell consulting
services to help customers integrate the product into existing IT infrastructures.

Licensing businesses generally have attractive margins. This is because, while it may
cost $1 million in payroll to produce a new software program, the second copy of

that program is essentially free. Having sunk the cost into building the product, the

Practical Considerations X 78

company can sell as many copies as it likes without paying the developers to start all

over again. As a result, selling a new copy of an existing product really just requires

paying the sales team that sells it.

Services businesses, by contrast, have much slimmer margins. This is because, to

deliver the service, the business must have the people on the payroll who can do the

work that is inherent in the services contract. Selling more consulting engagements

requires that you hire more consultants. Thus, the costs that a services business incurs

on every contract include not just the cost of selling it, but also the cost of fulfilling it.

Of course, very few companies are purely licensing businesses. Most provide at least

customer support. However, building attractive margins is easier in a business with a

significant licensing component.

Dual-licensing businesses offer two different revenue streams. Proprietary customers

pay licensing fees, giving the business a high-margin licensing revenue stream. Both

proprietary and open source users may choose to buy consulting or technical sup

port, giving the business a lower-margin services revenue stream. This diversity in

the revenue streams can allow the company to weather temporary slowdowns in

either its licensing or its services businesses.

Capital

Over the past several years, the success of open source business models, and of dual-

licensing models in particular, has caught the attention of the investment commu

nity. As investors have learned more about open source and dual licensing, they have

begun to make investments sometimes substantial investments in new busi

nesses. In addition, established companies have begun to look at open source as a

strategic business advantage, and not just as a low-cost way to bring technology in-

house. Major technology vendors have demonstrated their willingness to acquire

open source businesses at prices that reward the principals and original investors in

those businesses.

Venture capitalists and other sources of early-stage funding for companies look for a

few key attributes in open source businesses.

First, of course, the company must have a credible, defensible business model. It is,

generally, easier to raise money for a company that uses dual licensing, than for one

planning to make money exclusively from services. The big risk for a new services

business is that it will demonstrate the viability of a new services opportunity, and

thus attract the attention of a large established services player. Popular open source

packages have enormous installed bases. Businesses exist today that earn tens of mil

lions of dollars supporting and training those users. That is enough money to inter

est even a large, established company.

80 X Dual Licensing

The real problem with providing only services for an open source package is that the

strategy is hard to defend against competitors. While it is true that the original

authors of an open source package have an advantage in supporting it after all, they

know the most about how it works freely available source code permits anyone else

to learn the product internals and offer the same service.

Investors and acquirers are generally willing to pay less for a pure services business

than for a licensing business, or for a business that combines the two sources of reve

nues. After all, costs grow in proportion to revenue growth. Every services sale

requires staffing to meet the service commitment. Selling licenses for software, on the

other hand, is much cheaper; making another copy of an existing product is free.

Second, investors look for open source packages with a solid market presence. The

investor typically wants to see a track record of successful deployment to prove that a

market exists. Thus, it is very hard to raise money to build a brand-new open source

package from the ground up. Indeed, virtually all of the open source businesses

funded in the past decade have tried to commercialize on the value of existing open

source packages.

This creates a chicken-and-egg problem. The open source package must exist before

it can be funded. Somehow, though, the package must get written in the first place.

Generally, the open source packages that serve as the foundation for successful busi

nesses were labors of love in the beginning, created by developers working in their

spare time for free. Only when they succeeded in building a credible product could

they raise money.

Third, and significantly, investors always look at the team in which they are asked to

invest. As a rule, no investor will back an unbalanced organization all engineering,

or all marketing, for example. A fundable open source business must combine the

technical expertise of a solid group of engineers with experienced management. In

particular, the company must be properly staffed to market and sell the licenses or

services that the business will offer. This point may seem obvious, but in practice, it

is very hard to put together a solid team with the ability to make and execute a busi

ness plan that demands both solid product development and execution against a

financial plan.

Once an open source business is successful in the market, it can choose to go in a

number of directions.

If the business is generating profits, the owners may choose to continue to run it as a

privately held company, earning a return on their effort and investment in the form

of dividends. As a rule, venture-backed businesses do not have this option. The ven

ture capital community wants to liquidate its investment at a profit within a few

years of making the initial investment, and will press management to sell the com

pany at some point. Absent that pressure, however, a strong, profitable, and growing

business is a wonderful thing to own.

More commonly, small businesses are acquired by larger businesses, and folded into

the bigger company. This rewards the original investors, as well as the principals

who started the company and helped to make it successful. The acquisition will most

often pay off in cash, stock in the bigger company, or a mixture of the two.

Established companies are willing to buy open source businesses for a variety of rea

sons. For example, open source technology is often ubiquitous in the market, and

controlling that technology can give the big company important advantages over its

competitors. In addition, an open source platform can create opportunities to build

new proprietary product offerings that run on top of the open source, which creates

new service and licensing revenue. The open source business s revenue may, on its

own, be enough to capture the attention of the larger company.

The reasons that any particular acquirer chooses to buy any other business depend

deeply on the peculiar circumstances of each, so there is no cookbook for building a

company to sell. In general, though, a solid customer base, a track record of consis

tent growth, and a profitable revenue stream are good things.

The last way that small, privately held businesses transform themselves is to offer

their stock for sale on the public markets. This is a much less common practice in

today than it was six years earlier; a business must, in general, have very high reve

nues to make this transition. In addition, the demands on the management team in a

publicly traded company are very different from, and in many ways more onerous

than, the demands on a private company s team. The requirements for reporting

financial information to the public markets and the need to manage the public

investment community s expectations dramatically change the way that a company

president works. As a result, many companies are forced to change their executive

teams before offering themselves for sale on the public market.

Choosing Licenses

One of the most important decisions in a dual-licensing business is what the terms

will be for both the proprietary and the open source license. This issue is much big

ger for the open source license, because that license is never negotiated. People sim

ply download the software and accept the terms. As a result, a mistake in the open

source terms is a mistake every single time the software is distributed.

Academic licenses are poorly suited to dual-licensing businesses, but reciprocal

licenses generally work well. An academic license simply requires acknowledgment

of the owner. Most rational businesspeople would much rather make that acknowl

edgment than hand over precious capital for use of software. A reciprocal license, by

contrast, requires that the customer s own intellectual property be given away under

an open source license. There is a very large population of potential customers who

are more interested in protecting their intellectual property than in saving money.

82
**

Dual Licensing

As a result, the only kind of open source license that makes sense for a dual-licensing
business is a very strong reciprocal license. The best example, of course, is the GNU
GPL. Choosing the GPL gives you the benefit of the work already done by the Free Soft

ware Foundation, or FSF, in drafting the license and defining the key terms. In addi

tion, the FSF has a strong vested interest in demonstrating the enforceability of the GPL,
so, in the event of a dispute over unauthorized use of your dual-licensed product, you
have access to a seasoned legal team that knows the subject well

It is almost certainly a mistake to try to draft your own open source license for a

dual-licensing business. Doing so requires that you understand and apply the funda
mental concepts of open source development and distribution in a new legal license.

This is work you do not need to do if you choose an existing license. More impor
tantly, writing a new license from scratch creates the opportunity to make bad mis
takes. Finally, drafting a new license will require you to educate the open source and

proprietary software business communities about the terms of your own license. This
will create friction and inhibit adoption. You want developers concentrating on your
software, not on your license.

Need and Pain

The interplay between the software product and its open source license is probably
the single most important business issue for dual-licensing companies. The software

product must create need in the market. Ideally, it will be so attractive to customers
that they simply have to use it. At the same time, the open source license must cause

enough pain that some users would rather pay money than endure the pain.

My company makes a product called Berkeley DB. It is an established product with a

good reputation, but the only way for our customers to use it is to combine it with
software they write themselves. That act of combination gives us leverage, because
the resulting work is derived from our software, and we thus can dictate the terms
under which the derivation must be licensed.

Our open source license requires that the entire work be released in open source
form. Open source users, of course, can do this, but the requirement is poisonous to

most proprietary vendors. Our dual-licensing strategy lets the proprietary customers

pay for a proprietary license and keep their own intellectual property secret.

Linux is, once again, a good example of a product for which dual licensing would
not work. Ignoring the ownership issues raised earlier, no customer needs to create
and redistribute derivative versions of Linux. Customers simply want to install and
use the operating system on their computers. None of those actions is forbidden by
the GPL, so there is no pain.

Practical Considerations ** 83

Of course there are businesses making money distributing Linux, but they are doing
so in different ways. Dual licensing works with only certain sorts of software, with

very specific ownership characteristics.

Any vendor considering dual licensing must consider both technology and licensing

when designing a business model. The software technology must be constructed so

that users need to do something specific for example, combine it with their own
intellectual property and distribute the combined work to others to use it. The

open source license must make this activity painful to at least some customers with

money. These customers must be willing to pay enough money to avoid that pain to

make the business profitable.

On the other hand, the open source license must not be painful to the open source

community, or it will undermine the benefits of the cheap and ubiquitous distribu

tion channel that open source licensing provides. Open source users must experi

ence only pleasure in their use of the software, or the product will fail to penetrate

the market.

Measuring the Market

Businesspeople generally measure markets in terms of dollars the amount of money
that customers in the market will spend for a product or service. Dual-licensing busi

nesses need a different metric, because they distribute their software to a combina

tion of paying and nonpaying customers. The result is that a dual-licensing business

can have a much larger installed base than a measure of dollars spent would suggest.

Dual-licensing businesses need to look at this issue pragmatically. Put bluntly, a

dual- licensing business is never going to get all the money on the table. Some users

would rather meet the open source terms than pay money for the software. A dual-

licensing business must balance the size of its installed base, and the concomitant

opportunity to sell more proprietary licenses, with the money that could be extracted

by charging for every use.

The long-term goal of the business is to maximize profits and to grow. By foregoing

some revenue in the short term, a dual-licensing business may make its product ubiq

uitous, which creates additional long-term opportunity. Though you might never get

all the money on the table, you can find yourself sitting at a much bigger table this way.

There are two other benefits to a large installed base, even if not everyone in it pays a

license fee.One, noted earlier, is that the earth is scorched for competitors: the only

way to compete on price with a free product is to pay people to use a competitive

one. This is an expensive way to capture customers.

The other, of course, is the opportunity to sell services independently of license fees.

A large installed base may be willing to pay for consulting and support, even if it is

not willing to pay for the software. Generally, dual-licensing businesses offer these

84 X Dual Licensing

services and book revenue profitably as a result. As a rule, however, dual licensing is

more valuable for the license fees that proprietary users pay than for the service fees

that open source users are willing to pay.

Piracy

Because open source software is widely available, it is easy for software pirates to

make and distribute copies in ways that violate the open source license for the code.

Significantly, it is easy for a user to download the software under an open source

license, and then to use it in ways that only a paid proprietary license would permit.

Piracy is not, of course, a problem unique to open source or dual-licensing compa
nies. Every software vendor indeed, every software developer who distributes a

product runs the risk that unscrupulous users will pirate copies of the product.

Individual vendors and umbrella organizations like the Business Software Alliance

battle the problem continually.

Piracy is a very real business problem for dual-licensing vendors. The two lines of

defense are diligence in protecting intellectual property rights, and consistent and

clear explanations of the terms under which the software is distributed.

Diligence in protecting intellectual property rights is relatively simple. Anytime a

dual-licensing vendor learns of a misappropriation of its software, it must pursue and

resolve the issue. This is no different from the rules that apply to a proprietary soft

ware vendor, of course.

Consistent and clear messaging on the license terms is equally important. Open
source licensing is now generally well understood by the software industry. By

emphasizing the conditions that apply to open source use, and making clear the dif

ference between its paid and proprietary licenses, a dual-licensing vendor can edu

cate its users and capture business before problems crop up.

In general, no responsible business or consumer wants to misappropriate the intel

lectual property of another. The penalties are large, the risks are unacceptable, and it

simply is not fair. Most consumers of software want to obey the law.

Dual-licensing vendors are in exactly the same position as purely proprietary ven

dors. Digital distribution means that copying is easy. There are pirated copies of both

proprietary and dual-licensed software in the world. Vendors of both have the same

law behind them and the same recourse against pirates.

The Social Contract

Open source is much more than an ingredient in a business model, of course. The

movement predates the dual-licensing model by decades, and its long history has

produced a complex and nuanced present. Any business that proposes to use open

source technology, including dual-licensing businesses, must understand and partici

pate in the open source movement as it exists today.

The open source community generally cares a great deal about reputation; compa
nies, as well as individuals, gain status by being smart and by contributing to the

good of the community. Contribution certainly includes developing open source

technology for use by others, and any dual-licensing business will do that. Contribu

tion can also mean, for example, promoting and explaining open source technology

in the press and at industry meetings a task for which businesses are often better

suited than individuals and supporting worthy open source projects with staff time

and money.

It is unusual in business for an outside group that pays a company no money and that

has no legislative authority to have as much influence over a business and its policies as

the general open source community does over open source businesses. If a company
alienates the open source community, the main advantages of open source distribu

tion ubiquity and a large installed base can disappear in a flood of bad press and ill

will on developer discussion lists. Executives at dual-licensing businesses must speak

clearly to their open source constituencies. They must show the community the respect

it deserves in order to earn the community s respect in return.

Besides merely making friends with the open source community, dual-licensing busi

nesses must pay attention to issues that are unique to the business model.

An unwritten social contract among open source developers says that the commu

nity generally will produce software that benefits the community most. This is in

some sense driven by Darwin the people who write open source code work on the

problems they consider most important, so if there is widespread pain around a par

ticular issue, there will be widespread attention to addressing it.

The social contract, of course, is not perfect. For example, many open source projects

are more poorly documented than their proprietary competitors, because very few

programmers enjoy writing documentation, and few will do it without being paid.

While proprietary enterprise software is not always more polished than open source,

it is generally the case that the drudgery in proprietary development gets more atten

tion than it does in open source projects. A programmer working as a volunteer often

lacks the patience to do the exhaustive testing and debugging, interface cleanup, and

so on, that commercial licensees of software have come to expect.

The introduction of companies focused on profits into this mix alters the social con

tract of open source. The change is, in some respects, for the better, but it is a change

nonetheless.

Businesses driven by profits will invest to maximize those profits. A large customer

willing to pay a significant price for a new feature or for changed behavior in a product

will get more attention from a business than will a large number of nonpaying users

86 xx Dual Licensing

who all want some different feature or behavior. In business, customers vote with their

money. In pure open source, contributors vote with their programming time.

A dual-licensing business will, and should, pay attention to the requirements of its

paying customers. The business needs to balance the needs of its paying customers

with the needs of the nonpaying open source user community. After all, the com

pany does not want to alienate its open source users and thereby lose the benefits of

its open source distribution.

As a rule, this issue requires attention, but seldom causes real problems. Paying cus

tomers are usually interested in speed, reliability, or enhancements that make a prod
uct more powerful. Those improvements are all useful and interesting to open source

users as well, so it seldom happens that the open source community loses and the

paying customer wins.

From the point of view of the paying customer, the ability of money to influence the

product roadmap is actually a benefit. Many companies considering adopting open
source technology are concerned that they have no way to influence the develop
ment community to solve real business problems for them. Because dual-licensing

companies care about income and profits, customers know that they can get the ven

dor s attention the old-fashioned way: by pulling out a checkbook.

Trends and the Future

Dual licensing is an innovative strategy that combines open source distribution with

proprietary licensing. The combination confers competitive advantages on busi

nesses that use it. These advantages include a low-cost distribution channel, power
ful product marketing, and a high-margin, scalable revenue stream.

Of course, dual licensing is just one tool that businesspeople can use to build sus

tainable enterprises in a world where technology and economic forces are in con

stant change. The rest of this chapter examines dual licensing in that larger context.

Global Development

The flow of capital and information across borders has transformed the world from a

collection of economic islands into a more integrated global economy. That trend

will surely continue, and will likely accelerate, over the next decade. At the same

time, security concerns, and particularly worries about terrorism, create a strong

political incentive to encourage the development of a prosperous middle class with

an economic stake in the future in emerging economies.

Worldwide economic development is necessarily influenced by information technol

ogy. Leaders of emerging nations are clearly interested in building clean, sustainable

IT industries. Doing so requires a significant investment in education, but also an

investment in enabling technology.

Trends and the Future X 87

Dual licensing provides a way for nascent knowledge economies to grow. Because

dual-licensed software is available for use at no charge under open source terms,

emerging businesses can preserve precious capital by choosing to comply with the

terms of the open source license.

China is an instructive example. In 2004, the Chinese government announced its

intention to invest in the development of a version of Linux tailored for use in the

country, with language and character set support and other new features. The eco

nomic advantage conferred by a low- or no-cost operating system in a country where

an enormous number of computers will be installed soon is obvious. Between 2005

and 2010, China is likely to become the world s largest consumer and producer of

open source software. Consumption will increase earlier, and faster, than production.

Demand for high-quality open source and dual-licensed products will be very high.

Although there is little or no short-term revenue for dual-licensing businesses here,

they do establish a long-term competitive advantage. As these small businesses in

emerging economies grow, and as they build value in expertise or new hardware and

software products, they can choose to pay some of their new capital for the more per

missive terms of the proprietary license. The cost of switching encourages customers to

stay with the product that they know, and the one built into their own products.

This same strategy applies to developed economies. Software vendors are generally

interested in the education market, in part because they want the next generation of

software consumers trained to use their products. Many vendors encourage univer

sity researchers and students to use their products so that the students will prefer

those products when they graduate and eventually recommend software purchases to

their new employers.

Dual-license vendors have an advantage in both cases, relative to proprietary ven

dors. Because the open source license terms permit use at no charge under reason

able conditions, individual business owners, as well as researchers and students, can

choose the open source software easily. They do not need to negotiate a special low-

or no-cost introductory license to use the product. There is much less friction in the

distribution of open source software than in most proprietary software distribution,

and the lower friction translates into higher adoption.

Open Models

Dual licensing is, at base, the combination of a venerable business strategy licens

ing software for money with a relatively new open source distribution strategy. This

combination is interesting and valuable on its own, but it is by no means the only

such combination that is possible.

The global Internet makes the distribution of content much cheaper and easier than

it ever was before. At the same time, it eliminates barriers to sharing among widely

88 J* Dual Licensing

dispersed individuals and companies. The effect is to create new opportunities for

the collaborative creation of intellectual property.

Some examples of this collaborative development were all but unknown just a few

years ago. Weblogs, or blogs, are common today. They have emerged as an alternative

source for news and information, replacing older media such as newspapers and radio,

especially for fast-breaking stories. Similarly, the publication and production of scien

tific journals is changing. Single-vendor control over high-profile journals, and the ven

dor s ability to dictate pricing to the market, is eroding because researchers can collabo

rate and publish their research online more easily than ever before. Finally, some web

sites encourage user contributions to make themselves more valuable to visitors. An

excellent example is the book and other product reviews on Amazon.com. Amazon s

visitors share their reviews with one another because they benefit from that sharing,

but Amazon itself gains an enormous advantage because of the depth and breadth of

those reviews.

In all three of these cases, old-fashioned ideas, like news distribution, journal publi

cation, and product reviews, have been transformed by the open, collaborative pro

cesses that the Internet encourages. Licensing is as much an issue here as in software

distribution ownership of the content, and the right to distribute it online, must be

considered carefully.

Collaboration and open distribution continue to transform the way that businesses

operate. That transformation necessarily damages some established businesses, espe

cially those where a middleman controlled the flow of goods or information, and was

able to extract a fee from the flow. The Internet allows individuals to bypass that

middleman the well-known "disintermediation" strategy and to share and pub
lish on their own.

Any new business built on a disintermediation strategy must consider the law.

Unlawful distribution of copyrighted music files is theft, not sharing, but that fact

alone does not mean that the existing music retailing industry makes sense in a

world with cheap ubiquitous bandwidth. The next generation of businesses must

find ways to use the legal system to protect intellectual property, even while they
take advantage of the powerful collaborative properties of the global Internet.

The Future of Software

Open source has transformed the way that software is produced. Now, with dual

licensing, open source is changing the way that proprietary software is distributed.

Dual licensing will never replace either pure proprietary or pure open source strate

gies. There are compelling reasons for both to exist.

Purely proprietary distribution allows companies to invest significantly in new devel

opment and to be rewarded for that investment. Particularly at the edge of informa

tion technology, where the newest products and services are built, businesses will

use proprietary licensing to protect their competitive position and to extract maxi

mum value from their efforts.

Purely open source development and distribution, on the other hand, reduces costs

of core infrastructure for consumers, and powerful market forces encourage invest

ment in that cost reduction. Open source has been most successful in those sectors of

the market where technology is mature and stable operating systems, databases,

web servers, and middleware. This is not to say that open source development is not

innovative, but its impact has been largest in the cases where it has commoditized

products in mature markets.

The net effect of open source distribution, from the point of view of the consumer, is

to reduce the total cost of software licensing. Dual licensing does nothing to reverse

this trend; dual-licensed software will exert downward price pressure on established

markets just as purely open source software does, though the net reduction in costs

will be lower since some consumers continue to pay for software licenses.

Dual licensing will continue to grow in popularity as new and established businesses

apply the strategy to new opportunities. Competitive pressure ensures that busi

nesses will look for ways to gain advantages over one another, and building a hybrid
business offers advantages in many cases. Other novel hybrid strategies will, no

doubt, appear in the future.

90 X Dual Licensing

if CHAPTER 6

Ian Murdock

Open Source and the

Commoditization of Software

It is said that the only things certain in life are death and taxes. For those of us in the

IT industry, we can add one more to the list: Commoditization. The question is, how
do we deal with it, particularly if we are IT vendors and not simply IT consumers, for

whom Commoditization is an unquestionably positive event?

Commoditization is something that happens to every successful industry eventu

ally success attracts attention, and there are always competitors willing to offer

lower prices to compensate for lesser-known brands or
"good enough" quality, as

well as customers to whom price means more than brand, quality, or anything else

the high-end providers have to offer.

Often, to remain competitive at lower price points, the low-end provider employs a

strategy of imitation for example, investing less in research and development than
its high-end peers, and instead relying on the high-end providers to

"fight
it out" and

establish standards and best practices it can then imitate in its own products.

This strategy works because success also breeds interoperability. Unless a company
monopolizes a market (a temporary condition, given today s antitrust laws), an

industry eventually coalesces around a series of de facto standards that govern how
competing products work with each other, or how consumers interact with like

products from different vendors. In other words, given time and a large enough mar
ket, every industry naturally develops its own lingua franca.

This kind of natural standardization is good for consumers and for the world as a

whole. Few people, for example, would know how to type if every typewriter used a

different layout for its keys, and the telephone wouldn t be in widespread use today if

each carrier s network couldn t talk to any of its competitors networks. And where

would we be today without the descendants of typewriters and telephones namely,

computer keyboards and telecommunications?

Of course, from any incumbent s point of view, an ideal world would allow, say, the

market leader in typewriters to own the layout of its product s keys, so anyone who

learned to type using its product would face huge barriers to switching to a competitor s

product. Fortunately, the layout of a typewriter s keys and similar interoperability fea

tures are very difficult proprietary positions to enforce, so once a standard way of inter-

operating emerges, all vendors are free to imitate that standard in their own products.

The moral of the story is that standardization, and thus commoditization, are both

natural market forces as well as key events in human history. When an industry

matures and competing products become more or less interchangeable commodities,

this allows new industries to build atop them to create new and innovative products

that would not have otherwise been possible if the industries they built upon had not

standardized. In the case of typewriters and telephones, it is clear that the industries

they enabled the computer industry, e-commerce, etc. greatly exceed the size of

the industries that enabled them, both economically and in their contribution to

human progress.

So, how do incumbent firms fight commoditization? Another moral of the story is

that they shouldn t. The forces of commoditization, being natural market forces, can

not be beaten. Yet time and time again, incumbent firms fight them. First, the chal

lengers are ignored or dismissed as cheap knockoffs, unsuitable for any but the least-

demanding customer. Then they are ridiculed for lacking imagination and innova

tion. Then, invariably, they are imitated but by this point, it is too late, as the mar

ket has fundamentally changed, and the incumbent finds itself unable to compete

because the challengers were built for a commodity market and the incumbent was

not. In very simple terms, this is Clayton Christensen s Innovator s Dilemma at work.

This chapter argues that the open source movement is just another commoditization

event and that, like other commoditization events, it represents a disruptive shift in

the software industry as well as an opportunity for entrant firms to unseat the estab

lished firms against seemingly overwhelming odds. That being said, commoditiza

tion does not equate to certain death to the established firms if they have the vision

to see beyond the disruptive events that may befall them in the short term and can

adapt themselves to the new commodity environment. Above all, this chapter aims to

convey that commoditization is a natural and unstoppable force that is good for

everyone involved if that force is allowed to develop on its natural course.

92 * C Open Source and the Commoditization of Software

Commoditization and the IT Industry

The computer industry managed to escape the forces of commoditization for the first

20 years or so of its life a natural occurrence given the industry was young enough
and small enough that standards had not yet had the opportunity to emerge. In the

first two decades of the industry, computer manufacturers delivered an end-to-end

solution to the customer, from the hardware on up through the operating system
software that ran the hardware to the applications that ran on top of the operating

system. Every layer of the stack and, most importantly, the interfaces between

them was proprietary to the computer vendor. As a result, every computer spoke a

different
"language,"

and it was difficult to get different types of computers to "talk to

each other" and interoperate.

Because of these incompatibilities, the initial choice of hardware implicitly tied the

buyer to an operating system; in turn, the operating system dictated what applica
tions the buyer would be able to use. Over time, the high cost of computing technol

ogy made it financially impractical for the buyer to move away from the incumbent
vendor because previous investments in that vendor s technology would have to be

discarded. The combination caused users to become "locked in" to a single vendor.

However, as the industry matured, the dynamic changed. Entrant firms such as

Apple, Apollo, and Sun saw the opportunity to create products that targeted an

entirely new class of computing consumer the individual user that could not

afford the mainframes and minicomputers sold by established firms such as IBM,

DEC, and Data General.

By focusing on
"good-enough" quality and lower prices, and by tapping into years of

consumer frustration caused by batch processing, timesharing, and incompatibility
between proprietary stacks, the new

"personal computing" products were received

enthusiastically and began to appear in offices and dens everywhere.

The strategies employed by one entrant firm in particular and one established firm in

particular would forever change the computer industry. The latter, ironically, would
lead directly to the commoditization of the hardware industry, and the former would
lead directly to the ongoing commoditization of the software industry.

On the hardware side, IBM sought to stem the rising tide of Apple by introducing its

own personal computing product, the IBM PC. Because of internal cost structures

designed around multimillion-dollar mainframe products as well as an aggressive prod
uct launch timeline, IBM decided to use off-the-shelf parts for the IBM PC instead of

following its traditional approach of developing proprietary components in house.

On the software side, Sun sought to attain a competitive advantage against the pro
prietary stacks of the mainframe and minicomputer vendors by basing its worksta
tion products on the Unix operating system. Unix was already hugely popular in aca-

demia and corporate research labs, so this approach gave Sun instant access to a large

Commoditization and the IT Industry X 33

portfolio of compatible applications as well as an enormous user base already famil

iar with the operating system that shipped on its products.

In other words, Unix was an open system that is, a system based on open standards.

Unix variants from different groups (for example, AT&T Unix and BSD Unix, the

two variants in widespread use in the early 1980s) were largely based on the same

APIs. Because of this, applications could be easily ported from one version of Unix to

another, and users familiar with one version of Unix could easily learn to operate a

different version.

Decommoditization: The Failure of Open Systems

The impact of Sun s decision was the first to be felt. Open systems quickly became

popular because of the compatibility they offered a completely foreign notion at the

time. Users adopted systems based on open standards because doing so allowed

them to move freely among products from different vendors, avoiding the lock-in

common in the proprietary world. Soon, numerous companies including some of

the mainframe and minicomputer vendors launched Unix-based workstations to

compete with Sun s, and Unix became big business.

As the Unix market grew, the competition for customers became fierce. "Compatibil

ity among products," which helped the Unix vendors win converts from the propri

etary world, changed from an asset to a liability. In an attempt to imitate the lock-in

strategies that had served the mainframe vendors so well for so many years, the Unix

vendors themselves began adding incompatible features to their respective products.

This ultimately fragmented the market and alienated customers. By the late 1980s,

Unix was no longer a lingua franca for the workstation market, but a veritable tower

of Babel.

Meanwhile, IBM s decision to use off-the-shelf parts in the IBM PC inadvertently cre

ated the industry s first open hardware platform. It was not long before a new wave

of entrants, such as Compaq, Dell, and Gateway, realized they could build products

that were 100% compatible with the IBM PC, thus gaining access to a large base of

applications and users, much as Sun had done by adopting Unix. On the component

side, two companies experienced the biggest windfall from IBM s decision: Intel and

Microsoft. As the clone market emerged, both companies found an entire market to

sell to, not just a single company a much larger opportunity, even if that single

company was IBM.

At this point, the events set in motion by IBM and Sun intersected. As the Unix ven

dors were competing vigorously with each other through the introduction of propri

etary extensions to Unix, thereby "decommoditizing" the lowest level of the software

stack, the fully commoditized PC waited in the wings. As PCs became more power

ful, they began to replace workstations, and as PCs continued their march upmarket,

94 X Open Source and the Commoditization of Software

the market power of the PC vendors (and, thus, the vendors of their constituent

components) increased dramatically. In particular, the new ubiquity of the PC helped

Microsoft s Windows operating system replace Unix as the lingua franca of not just

the new PC-based workstation market, but also of the entire computer industry.

Why did Unix fail while the PC has succeeded beyond anyone s wildest expecta

tions, particularly those of its progenitor, IBM? Both began life as open systems as

ecosystems of sorts and both grew enormously popular because of their open
nature. On the Unix side, though, each vendor tried to own the ecosystem by itself,

and, in the end, all they collectively managed to do was destroy it. Meanwhile, on the

PC side, the ecosystem won out in the end, for the betterment of all who embraced

that ecosystem; and, most importantly, the existence of that ecosystem enabled the

creation of other ecosystems above it. For example, without a truly open platform in

every office and den, the Internet would not have been able to take root, and it too

evolved into an ecosystem that has spawned countless products, services, industries,

and ecosystems that were previously unimaginable.

Linux: A Response from the Trenches

It was into this environment that Linux emerged in the early 1990s. At first the mere

hobby project of a young college student, Linux captured the imagination of those who
could best be described as the "collateral

damage" of the Unix wars. Two features of

Linux made it appeal to this large group of users and developers: its compatibility with

Unix, with which they were intimately familiar; and that it was licensed under the GNU
General Public License (GPL), which not only allowed the scores of Unix refugees to

contribute to its development, but also guaranteed that Unix-style fragmentation could

never happen to the result of the community s work, at least at the source-code level.

Linux grew by leaps and bounds during the 1990s. As with previous challengers, it

was first ignored, then ridiculed, by the incumbents, primarily Microsoft, which had

masterfully used its position as the de facto standard operating system to expand into

numerous additional markets and gain additional even unprecedented market

power. Unlike so many companies that had come before it, Microsoft wielded the

forces of commoditization expertly. By offering its products at lower prices than its

competitors could afford to offer them, Microsoft preemptively commoditized many
of the markets in which it competed, depending on high volume to make its prod
ucts profitable and making it impossible for challengers to undercut it.

As Microsoft s power grew, so did the desire of Microsoft s competitors to counter it.

By the late 1990s, it was clear that Linux was a powerful force, and many of the

industry s largest companies began to see it as a competitive weapon. These compa
nies also recognized that the power behind Linux wasn t so much its technology as

its licensing and development model, by now referred to as
"open

source" and in

particular, the open source model s ability to "out-commoditize" Microsoft.

Linux: A Response from the Trenches
*

95

The fundamental question is this: why is Linux (and the open source movement it

helped launch) able to out-commoditize Microsoft? Because it, like the PC, the Inter

net, and the other open systems and open standards we take for granted today, is

more of an ecosystem than a technology. Indeed, Linux builds above those previous

ecosystems without open, commoditized hardware, and without the Internet to

enable the open source development model to work, Linux would not exist today.

Microsoft may wield the forces of commoditization more expertly than any company
that has come before it, but its platform is not an ecosystem. By definition, an ecosys

tem is an environment to be shared, not owned. Linux is positioned to become the

lingua franca of the lowest level of the software stack, if we never forget it is an eco

system and not a product to be owned. Looking at the lessons of the past, if it

remains an ecosystem, we all win. If not, we destroy it.

"So, How Do You Make Money from Free Software?"

If the open source movement represents the commoditization of software, how can

the challengers of today s software industry utilize its commoditizing power to unseat

the incumbents, Microsoft in particular? Perhaps more importantly, if this strategy

succeeds, is there money to be made in a software industry that has been commod
itized? Finally, are there lessons that can be applied from past commoditization

events, particularly the events that reshaped the hardware industry in the 1980s?

For a textbook example of how to turn the commoditization of an industry into busi

ness advantage, one need look no further than Dell Computer. Dell, of course, was

one of the companies that started life in the mid-1980s to build IBM clones. Dell s

initial claim to fame was "build to order," taking advantage of the fact that a PC was

not really a product in itself, but rather, an assemblage of numerous products that

any individual with a moderate amount of skill could assemble himself a direct lin

eage from IBM s decision to base the original IBM PC on off-the-shelf parts.

Unlike some of its competitors, Dell saw itself for what it truly was: an assembler of

off-the-shelf components and a distributor of these components in a form its custom

ers found useful namely, a complete PC. Dell gave its customers choice not an

overwhelming amount of choice, but enough choice to give those with the skill to

build their own PCs reason to buy from Dell instead of building themselves. Its com

petitors, on the other hand, attempted to mold the PC into a monolithic, unchange
able product, a collection of specific components from specific vendors with the

occasional bit of proprietary technology added to the mix a thinly veiled attempt to

decommoditize the PC standard and own it all to themselves.

To accommodate its new approach to selling hardware, Dell had to develop a new kind

of business model. Over the years, the Dell model became more about the assembly of

product than the final product of that assembly process. Dell became remarkably good

96
*
* Open Source and the Commoditization of Software

at assembling components from a multitude of suppliers into cohesive wholes, and in

negotiating with those suppliers to get the lowest possible price. It stuck to commodity

components, allowing the market to pick winning technologies and resisting the temp
tation to invest heavily in the R&D required to play the proprietary lock-in game its

competitors were playing. It employed unusual tactics on the sales side, most notably

selling directly to the consumer instead of going through wholesalers and resellers,

each of whom took a substantial slice of the profit margin.

As a result of its streamlined processes and lower cost structure, Dell was able to sell

PCs at a much lower price than its competitors could. As the PC market grew, and as

the market commoditized further with each failed proprietary extension to the PC

standard, Dell s position grew stronger. As the PC began to move upmarket, it sim

ply became less expensive to "outsource" the assembly of the PCs to a supplier that

specialized in assembling them, and Dell was extremely well positioned to play this

new role. Today, as the commoditization of PCs extends to other parts of the hard

ware market servers, storage, printers, handheld devices Dell continues to be

extremely well-positioned, and its entry into a new market is often taken as impend
ing doom for that market s established firms.

The First Business Models for Linux

So, what lessons can we leam from Dell as open source commoditizes the software

world? Namely, that operating in a commodity market calls for entirely different busi

ness models than the business models that have preceded them. Beyond general conclu

sions such as this, what specific lessons are there to be learned from Dell s success? As a

start, we will look at the lowest layer of the software stack, the operating system, and

attempt to draw parallels between Dell s successful strategy and the strategies of today s

open source operating system vendors namely, the Linux distribution companies.

To millions of users around the world, "Linux" is an operating system. They re right,

of course, but the reality is far more complex than that. First of all, Linux proper is

just the kernel, or core, of the operating system the rest of the software that com
prises the "Linux operating system" is developed independently from the kernel, by
different groups that often have different release schedules, motivations, and goals.

1

Traditional operating systems are built by cohesive teams, carefully coordinated

groups of product managers, project managers, and programmers at companies and
universities. In contrast, Linux is built by thousands of individuals hackers and

hobbyists and professional programmers some paid to work on specific projects
but the majority simply working on what interests them. And the reality is even more
involved: Linux is not just a single system, but hundreds of subsystems, programs,

1 To avoid confusion, I will use the term Linux to refer to the operating system, following
standard usage. When referring to just the Linux kernel, I will say "the Linux kernel."

The First Business Models for Linux * * 97

and applications, themselves developed by their own communities of individuals

around the world.

So, who glues all this mishmash together into something that actually looks like an

operating system? Since almost the inception of the Linux community, this has been

the job of the "Linux distribution," a curious term in itself for those coming from

broader computing circles accustomed to operating systems being built by cohesive

teams, or at least teams of cohesive teams.

A Linux distribution is a collection of software (typically free or open source soft

ware) combined with the Linux kernel to form a complete operating system. The first

distributions (HJ Lu s boot/root diskettes, MCC Interim) were very small affairs,

designed simply to help bootstrap the core of a Linux system, on which the user

(typically a Linux hacker himself, eager to get into writing some code) could com

pile the rest of the system by hand and as needed.

A second generation emerged (SLS, Slackware, Debian) that aimed to expand the

breadth and depth of software shipped by the first-generation distributions, includ

ing software typical end users of Unix systems might find useful, such as the X Win

dow System and document formatting systems. In addition, the second-generation

distributions attempted to be easier to install than the first, as they were targeted not

at Linux hackers eager to get into writing code, but rather, at the ever-expanding col

lection of end users Linux was just beginning to attract at the time.

As Linux s user base grew, many in the Linux community began to sense a business

opportunity, and the first Linux companies were formed: Red Hat, Caldera, SuSE,

and many others whose names have long been forgotten. These companies formed

around the concept of selling commercial distributions to the expanding Linux user

base. A third generation of Linux distributions was born.

The commercial opportunity was ripe, as the primary means of acquiring Linux to

that point had been the Internet, and up to that point, the primary users of Linux

had been students at universities, where Internet access was plentiful. However, in

the broader population where Linux was beginning to get noticed, potential Linux

users were lucky to have dial-up access to online systems such as CompuServe.

Combined with the rising popularity of CD-ROM drives and the growing size of dis

tributions to incorporate more and more software to appeal to a wider and wider

audience, the first business models for Linux were born.

These business models served the first Linux companies well through most of the

1990s and, indeed, this is where the term "Linux distribution" originated the com

panies themselves were little more than assemblers and distributors of Linux soft

ware, including the Linux kernel, the GNU compiler toolchain, and the other soft

ware that came with a typical Linux system. As the typical Linux user became less

and less of a technologist and more and more of a traditional end user, the focus of

98 *
*

Open Source and the Commoditization of Software

the distributions shifted from simple assembly and distribution to making the distri

butions easier to install and use.

Linux Commercialization at a Crossroads

Of course, as distributors of a commodity (for, after all, any company could easily

become a Linux distributor all the software being distributed was free), these new
Linux distribution companies lacked the

"proprietary advantage" every business

needs to survive, not to mention thrive. So, following time-honored tradition, many
of the Linux companies kept their "value add" proprietary in an attempt to better

compete with each other.

For a time, one company took a different approach: Red Hat. After a brief flirtation

with proprietary extensions, Red Hat announced its products would include only

open source software. Why? It listened to what the market was telling it. The scores

of Unix refugees, now occupying important positions in the companies that were

adopting Linux in droves, had already been down that path; furthermore, the giants
of the industry now supporting Linux, which by now included virtually all of the

companies that had participated in Unix s destruction and had seen the conse

quences, saw Linux as a commodity platform that could recapture the position they
had collectively handed to Microsoft in the early 1990s. As a result, Red Hat emerged
as the market-leading supplier of Linux software.

However, as the Linux market continued to grow, and as it began to take a place at

the core of the computer industry, Red Hat bumped up against its own ceiling,

caused by lack of proprietary advantage other companies were beginning to take in

billions of dollars per year in revenue from Linux-based sales, while Red Hat seemed
to have hit its peak at $100 million or so.

To counter this, Red Hat came up with a strategy that was still in keeping with its

"100% open source" market position. Instead of focusing on selling Linux as a boxed

product, it would sell software updates to those boxed products in the form of

annual subscriptions. This strategy by itself proved inadequate, as the software

updates it distributed were available for free. So, it combined the new strategy with
another maneuver, a redefinition of the "Linux

platform" to one it could define and
control itself.

Moving away from its traditional, freely redistributable Red Hat Linux product line, it

launched Red Hat Enterprise Linux. The key part of the strategy behind Enterprise
Linux was that independent software vendors (ISVs) and independent hardware ven
dors (IHVs) were directed to certify to this new

"high-end"
Linux platform, while the

old Red Hat Linux was relegated to software developers and infrastructure roles. The
other key pan of the strategy was that Enterprise Linux was no longer freely redis

tributablethe acquisition of the product was tied to the subscription, and any
redistribution of the product caused the subscription to be null and void.

99

In other words, if Linux users wanted access to the applications and hardware certi

fied to Red Hat s platform, they had to run Enterprise Linux. To run Enterprise

Linux, they had to acquire it from Red Hat via the new subscription model, which

entailed signing a subscription agreement that forbade them from redistributing it.

More precisely, customers were still free to redistribute Enterprise Linux, but in

doing so, they lost all support from Red Hat and, most importantly, from the legions

of ISVs and IHVs that certified to the Red Hat platform. Red Hat s transformation was

complete when it dropped its Red Hat Linux product line altogether in 2003. Red

Hat s new model was still in keeping with the letter of the open source movement

but no longer with its spirit.

Proprietary Linux?

By any measure of the term, this is proprietary lock-in, albeit proprietary lock-in that

does not involve the traditional attainment through source code intellectual property

i.e., proprietary software. In a way, Red Hat has learned from the lessons of Dell s suc

cess: it has come up with a clever new business model to match the commodity mar

ket in which it competes operating systems used to be sold as products in boxes or

bundled with other products, and Red Hat realized this approach would not be profit

able in the new operating system market Linux was helping to create; so it found a new

way to sell its operating system products that was profitable.

However, in a very real way, Red Hat s model is also dangerously close to the model

employed by the Unix vendors, which had catastrophic consequences. It is attempt

ing to decommoditize the Linux platform, not through proprietary extensions in the

form of software, but through a redefinition of the Linux platform to its own ends

and the restriction of how that platform can be used and redistributed. Sure, the

source code to its platform is still freely redistributable, but with the shift of propri

etary position away from source code intellectual property and to third-party rela

tionships and subscription agreements, the rules of the game have changed dramati

cally here as well.

What s at Stake?

Red Hat s new business model may be helping its revenues in the short term, but is it

in Red Hat s best long-term interest not to mention the best interest of the Linux

ecosystem as a whole if Linux is owned by a single company, or if Linux fragments

like Unix did as Red Hat s competitors follow down the proprietary Linux path?

If Red Hat s business model is wrong, what is the right business model for Linux dis

tribution vendors? In my view, the Dell model can be taken a step further than any of

the Linux distributors have thought to take it. After all, what are open source tech

nologies but commodity software components, and what are Linux distributions but

assemblers of those components into products the end customer finds useful?

100 * C Open Source and the Commoditization of Software

Indeed, such an "assembler of commodity software components" business model might

fully realize many of the benefits of Linux that the traditional, product-oriented busi

ness models of Linux distribution companies have failed to capture: flexibility and

choice, without the substantial expertise and financial investment required to adapt a

Linux distribution for its own purposes. What if a Linux distribution was a collection of

parts that could be mixed and matched to suit the needs of the company buying it

instead of a one-size-fits-all, monolithic product like the Linux distributions of today?

As with new business models that have come before it, such an approach would

open Linux to new markets, markets that are already using Linux, but for whom
today s product-oriented business models are ill-suited: server appliance vendors,

set-top box makers, and others to whom Linux is an invisible vehicle for driving
their own products. In their world, Linux is a piece of infrastructure, not a product
to be owned by Red Hat or otherwise.

Indeed, this is the model being employed by my company, Progeny. Our approach is

to embrace the commoditizing effect Linux and open-source software have on the

software industry instead of fighting it. Since every company needs a proprietary

advantage of some kind, we ve chosen to focus on building advantage through our

processes, not technology, much as Dell did in other words, to leverage our exper
tise in distribution building to help other companies assemble commodity software

components from disparate places into cohesive wholes, and to do so in a scalable

and flexible way.

Beyond building a better business model around Linux, what s at stake? I contend far

more is at stake, for one simple reason: Linux needs to remain a commodity, as it is

now a core piece of infrastructural technology at the heart of the computer industry.

Indeed, Linux was enabled by the commodity nature of the last infrastructural tech

nology to redefine the IT industry: the Internet.

In "IT Doesn t Matter," which appeared in the May 2003 edition of Harvard Business

Review, Nicholas Carr points out that infrastructural technologies "[offer] far more
value when shared than when used in isolation." What happens if Linux is decom-
moditized and ends up being the proprietary product of a single company to serve its

own purposes? What if the PC or the Internet had been decommoditized? Where
would we be today?

Carr s essay provides hope that there is money to be made in infrastructural technol

ogies that have been fully commoditized, and that there s no need to try to own those

infrastructural technologies:

. . .the picture may not be as bleak as it seems for vendors, at least those with the

foresight and skill to adapt to the new environment. The importance of infra-

structural technologies to the day-to-day operations of business means that they
continue to absorb large amounts of corporate cash long after they have become

What s at Stake? X 101

commodities indefinitely, in many cases. Virtually all companies today con

tinue to spend heavily on electricity and phone service, for example, and many

manufacturers continue to spend a lot on rail transport. Moreover, the standard

ized nature of infrastructural technologies often leads to the establishment of

lucrative monopolies and oligopolies.

Carr s essay also provides historical perspective on the commoditization process:

...infrastructural technologies often lead to broader market changes. [...]A com

pany that sees what s coming can gain a step on myopic rivals. In the mid-

1800s, when America started to lay down rail lines in earnest, it was already

possible to transport goods over long distances hundreds of steamships plied

the country s rivers. Businessmen probably assumed that rail transport would

essentially follow the steamship model, with some incremental enhancements.

In fact, the greater speed, capacity, and reach of the railroads fundamentally

changed the structure of American industry.

In a commodity world, technologists need to think about innovating in their business

models as much as (if not more than) innovating in their technology. Of course, it s a

natural trap for the technologist to think about technology alone, but technology is but a

small part of the technology business. Look for your competition s Achilles heel, which

more often than not is an outdated business model in a changing world, not technol

ogy. To attack your competition with technology alone is to charge the giants head on,

and this approach is doomed to failure the vast majority of the time.

Businesses operating in a commodity world also need to build business models with

the larger ecosystem in mind. It is tempting, once the incumbents have been over

thrown through the powers of commoditization, to lapse into the same old propri

etary lock-in strategies that served the former incumbents so well. In effect, though,

this is decommoditizing the industry, "poisoning
the well." It is possible to build a

successful business in a commodity market, as Dell and many others before it have

shown, and in the long run, it is far better to ride the forces of commoditization than

to fight them.

102 ^ &gt; Open Source and the Commoditization of Software

t CHAPTER 7

Matthew N. Asay

Open Source and the Commodity

Urge: Disruptive Models for a

Disruptive Development Process

Open source hastens software s natural trend toward standardization/commodification.

While technologically innovative companies will always find ample customer interest,

the most important innovations for the next decade of software will come from business

model innovation, mostly spawned by open source license requirements. Open source

builds a new intellectual property regime centered on the source of code, not source

code. Protection, in other words, shifts to
"owning"

the code creator, rather than the

product she creates. Those business models that acknowledge this and leverage it will

yield better profits than those that attempt a halfway embrace (or rejection) of open
source.

Introduction

We are missing the point. Yes, open source imposes dramatic changes on the soft

ware industry, and yes, it is roiling the fortunes of many an established vendor. It

will continue to do so, and at an increased pace. Yet despite the sometimes

anguished, sometimes giddy reception that open source has provoked in the IT

world, open source is not novel. It is not odd.

Open source is simply the software world s mechanism for becoming just like every

thing else.

All the world s a commodity or a service to support and distribute commodities:

this book that you are reading, the chair that supports you, the restaurant you will

eat at tonight everything including, increasingly, software, thanks to open source.

Open source accelerates the natural progress of software toward commodification, or

standardization.

It is critical that IT vendors understand this so that they can deploy (or fight, if they

so choose) open source effectively, and more intelligently choose how and where to

innovate. Open source does not destroy all value in software innovation; instead, it

shifts the control point from the code itself to the creator of the code. In so doing,

open source software will not pillage all closed source software. As in other indus

tries, there will continue to be plenty of room for upmarket vendors (e.g., Whole

Foods in grocery retailing; Starbucks in coffee; and Nordstom in retail clothing).

That said, there is no room for middling and muddling. Open source will commod

ity from the bottom up while
"upmarket"

vendors will dominate
"up

the stack."

Everything else will be a wasteland. Just as Safeway finds itself pummeled by Wal-

Mart and Whole Foods so, too, will middle-ground IT vendors find themselves

grasping at a dwindling market opportunity.

Open source offers hope, but perhaps not for the reasons normally associated with it.

Much has been made about the open source revolution, and with good reason. But

perhaps the best reason has little to do with development of source code, and instead

has much to do with distribution, marketing, and sales. In other words, what we

thought was a software development methodology may have far more importance as

a business strategy that undercuts competitors while driving down costs and shifting

control to buyers. In such a world, those who understand and leverage open source

commodification (or escape it) will thrive everyone else will be marginalized into

economic oblivion. Commodification, the highest stage of capitalism; open source,

the highest stage of software.

A Brief History of Software

Once upon a time, software did not matter hardware did. Software was something

that hardware vendors wrote to help them sell hardware. Little more. Software was

important because it made hardware operate, but customers understood that they

were paying for hardware, and not the software that ran on top of it. (This is still

somewhat true of certain areas of the embedded software market.)

As hardware commodified, software grew in importance as a differentiator with these

same customers. Not all hardware commodified at the same pace: Solaris servers, for

example, handled a workload in a way that commodified hardware could not, and

Sun consequently charged a premium. But the real premium increasingly gravitated

up the IT stack to the applications that people ran on their hardware. Hardware was

important, but only because the applications had to run on something. With the rise

of Dell and other commodifiers, however, IT buyers came to care less and less about

104 x C Open Source and the Commodity Urge: Disruptive Models for a Disruptive Development Process

the
"guts"

of their computing experiences they bought systems for the applications

they could run, for the productivity they could achieve.

No single company did more to send the applications trend into hyperdrive than

Microsoft. Microsoft made software easily consumable by the masses. By simplifying

computing, and by doing so at a dramatically lower cost, Microsoft grew the market

by competing against nonconsumption and underconsumption, inviting multitudes

of average users into the hitherto closed world of computing. Microsoft s Visual Basic

lowered the bar of expertise to be a proficient developer, and its Office suite created a

market of home and business users who suddenly could create brochures, quality let

terhead, etc. Whatever open source developers feelings about Microsoft, they should

acknowledge Microsoft as the natural parent to their own brand of commodification.

For this is what open source is doing: commodifying software. We are now at the

point where mainstream software is becoming commodified by the open source com

munity, perhaps pushing all value to the services that support hardware and soft

ware. Microsoft, in a sense, is being out-Microsofted.

In this world, customers benefit as vendors focus on solving their business prob

lems, instead of innovating new methods to achieve customer lock-in. Much of

today s IT world is composed of expensive, monolithic software "solutions" that end

up creating complexity and integration problems, instead of resolving customer

problems. That is, today s IT industry is a morass of conflicting standards, complex

installations, tepid product interoperability, and expense all products of the indus

try s Wild West "level of
thinking"

in its adolescent years. Increasingly, however, cus

tomers are tired of subsidizing the disarray and are turning to open source as a way
to get more for less. As open source proliferates, the cost of infrastructure software

will plummet, freeing up resources that the CIO can spend on resolving application

requirements up the stack.

Vendors, for their part, also benefit from increased use of open source, because it

removes the "IP safety blanket." Because code is open, vendors must find innovative

ways to satisfy and "lock in" customers. Copyright and patent are fine, but they pit

the vendor in an adversarial relationship with the customer, whereas open source

control mechanisms tend to force vendors to win by intimately understanding and

fixing their customers business problems. In addition, this commodification of IT

will push vendors to move up the stack (and off the stack, into services) to deliver

increased customer loyalty/value. Finally, as prices for software drop to match the

drop in hardware costs, more buyers will enter the market, increasing the size of the

market. Everyone wins.

A Brief History of Software

A New Brand of Intellectual Property Protection

To fully appreciate this trend, it is critical that we better understand the intellectual

property regime powering the open source revolution. Intellectual property (IP) law

has always been about control. That control benefits creators by holding off would-be

competitors long enough to allow the creator to attempt to profit from her innovation. I

write a piece of software; I copyright it; I sell it (assuming it is a useful piece of soft

ware and I have adequately marketed it so that people know about it). Simple. This has

been the software industry s dominant model for decades, and has created a few mam
moth software companies that have successfully exploited their IP to generate billions

of dollars in revenues. In this model, exclusion (i.e., the ability to keep competitors or

customers from copying one s code and distributing it to others) yields profits. In this

model, the code itself locked up and protected matters most.

In the open source world, at least as defined by the GNU General Public License

(GPL), IP continues to play a critical role, but it is a different kind of IP. Dubbed

"copyleft," open source IP focuses on keeping code access open rather than closed.

And, unlike in the world of proprietary software, the code matters less than the

coder anyone can see the code, but not everyone can replicate the coder s influ

ence on the community to which she contributes her code. By virtue of her contribu

tion, she builds influence in her chosen code community, and this influence trans

lates into a new kind of IP: reputation property instead of intellectual property.

In this new world of open source, reputation property means as much as or more than

traditional intellectual property. If I employ the developers on a given project, I have a

measure of control over the direction that the open source project will take. But even

more importantly, the more developers I employ who work on, say, the PostgreSQL

database project, the more likely it is that would-be customers will trust me to be able

to support it. Once a company is thought of as the default support vendor for a given

project, the harder it becomes to dislodge that vendor. This jibes perfectly with other

commodity businesses where brand, price, and service provide the only lock-in, a

benevolent lock-in that customers choose instead of one that vendors impose.

In this way, the open source code creator exercises a form of control over her cre

ation, and that control translates into her (and only her) ability to charge a premium
for the software. As an open source creator, then, my options for deriving profit from

my creation are not more limited, but they are different. Instead of a limited monop

oly guarded by law, I have a monopoly guarded by common sense: buyers want to

buy from the most qualified source of support. They pay to have access to the source:

not the source code, but the source of the code.

This distinction is important. The importance of source code gets trumpeted so often

that one would think that every IT buyer on the planet is clamoring for access to

source code. They are not. Indeed, Microsoft recently conducted a survey of its cus

tomers and found that roughly 60% felt that access to source code was "critical." But

106
*
C Open Source and the Commodity Urge: Disruptive Models for a Disruptive Development Process

when pressed on the matter, 95% said that they would never look at the source, and

a whopping 99% said that they would never modify it. (If they did, chances are that

such modification would violate their support agreement anyway, whether their ven

dor was Microsoft, Novell-SuSE, Oracle, Red Hat, etc.) In sum, customers perceive

source code access to be important, but are not exactly sure why. As I will detail

shortly, the
"why"

relates to a desire for additional choice and control, and choice

and control drive down costs.

Of course, nothing in this chapter should lead one to believe that source code is irrele

vant. Source matters. It matters because it lowers switching costs (i.e., the cost of swap

ping out one vendor s software for a competing vendor s software); because it provides

buyers with more control over their IT, as it allows them to shape code to fit their par
ticular needs; and because it provides a mechanism for keeping vendors honest, by

forcing them to take responsibility for the quality of their code. In short, source code

matters because it shifts control back to the buyer, which forces vendors to offer better

software at lower prices. While none of these source code benefits requires the inter

vention of a vendor, we should not get sucked into the belief that vendors matter but

little in the open source world. Instead, open source actually makes vendors more rele

vant to customers than ever before at dramatically lower prices.

Besides benefiting customers, this GPL licensing scheme offers vendors a way to

exercise an incredible amount of control over competitors. By open sourcing my
code under the GPL, I push my competitors to follow suit or to increase their R&D
efforts to escape commodification. Unfortunately for them, this counterstrategy of a

unilateral R&D arms race tends toward paltry results: customers will often opt for

the
"good enough" product when the price is dramatically lower. Yes, my closed

source competitors could simply take my freely accessible source code, "fork" it, and

build it into their own products, but they almost never will. Doing so compels them
to open source their own software, which they will be disinclined to do. Even if they
did so, however, and even if my competitor were not a stodgy old closed source ven

dor, but rather, an agile open source predator, it would matter little, because open
source buyers invariably favor the source of the source, as it were: they trust the cre

ator of the code to support it best.

Open Distribution, Not Source

This has huge implications for the software industry. Disruptive vendors can opt to

completely open source their code, relying on reputation property to net them reve

nues, and further relying on their freely available alternative to competitive products to

force competitors to meet them on their home turf. This is not to say that all vendors

must adopt an open source strategy, but rather, that they must compete with open
source s lower cost structures and superior distribution mechanisms. All must increas

ingly compete on open source s terms. More detail is needed on why this is so.

Open Distribution, Not Source
**

107

The Open Source Weapon

Open source enables a vendor to maximize its market penetration at minimal cost,

which is the goal of every IT vendor, but particularly of emerging-growth vendors

seeking to displace incumbent vendors. One of the biggest roadblocks to any com

pany s growth is the Bureaucracy Bottleneck the larger the buyer (and, hence, the

larger the opportunity), the more layers of bureaucracy an IT buyer must fight

through to try-before-they-buy. Not so with open source, which surreptitiously

makes its way into enterprises via free download.

Such distribution fattens a vendor s bottom line without fattening the customer s price

tag. MySQL had 10 million downloads in 2003, and by mid-2004 had more than 5 mil

lion installations. Of these would-be customers, 5,000 have returned to buy a support

contract/license from MySQL, bumping the company s revenues by 100% to $10 mil

lion in 2003. The revenue growth is important, but even more so is that it achieved this

growth by spending less than 10% of total revenues on sales and marketing activities. By

contrast, most public software companies spend 45-50% of total revenues on sales and

marketing, and companies of MySQL s size generally spend 21.8% on these activities,

according to a study done by Softletter.com. In short, open source creates a small uni

verse of prequalified buyers who seek out the vendor, instead of the other way around,

with the vendor s primary marketing costs relating to setting up an FTP server and

mostly word-of-mouth-type evangelism to developers.

The savings do not stop there. Whether the open source vendor "borrows" much of its

code (e.g., Novell, Specifix, Gluecode) or creates it almost entirely in-house and then

open sources it (MySQL, SugarCRM, JBoss), open source delivers development-related

cost savings. For the "borrowers," the cost savings are obvious: they leverage a well-

developed body of code, most of it written by individuals not on their payroll. For the

JBosses and MySQLs of the world, which do 85100% of their own development

work, there is still a significant QA savings from the global pool of testers who submit

bug fixes and code contributions (which may or may not be used by the vendor)

cheaper to build, cheaper to sell, cheaper to buy.

Proliferating Open Source Beyond the Enterprise

Today, open source largely confines itself to infrastructure software, in part because

this is where the widest computing community resides. Community-based open
source projects require a sufficient body of developers with aptitude and interest in a

given development problem. But as the IT industry begins to recognize the promise

of emerging open source business models, community becomes less critical to the

success of a project. As this happens, no area of the software stack will be exempt
from open source s influence and intrusion.r

Significantly, open source business models will pave the way for open source to

conquer the Great Middle Class of IT: the small to medium-size enterprise (SME)

108 ^ C Open Source and the Commodity Urge: Disruptive Models for a Disruptive Development Process

market. Open source, as a disruptive methodology in the Clayton Christensen

sense, will do more than simply allow startup vendors to compete against estab

lished vendors in established markets: it will help to create new markets by com
peting against under-consumption and nonconsumption. The Internet, and open
source s unparalleled use of it, is at this trend s core.

In "Does IT Matter?" Nick Carr offers one example of how this worked in another

industry: chocolate. Milton Hershey, founder of the Hershey Company, noticed a gap
in the chocolate landscape, a gap the railroad could resolve. Until his observation,

transportation deficiencies had forced production to stick close to consumption there

was no quick and refrigerated way to ship chocolate over long distances, creating
scores of micromarkets for chocolate. With the advent of the railroad, however, Her

shey conceived the idea of a national chocolate market, built it, and owned it.

Today, the Internet parallels the railroad infrastructure of Hershey s era. It offers

independent software vendors (ISVs) a similar opportunity to that which Hershey
had, yet the majority of ISVs are not capitalizing on it. Yes, some traditional ISVs can
and do offer their products for download, but this is a makeshift attempt to leverage
the Internet. Open source is an Internet phenomenon it depends upon the Internet

and extends the Internet s utility. Open source should disproportionately benefit

from the Internet s distribution mechanism, provided companies understand this fact

and act accordingly. As I will show shortly, tomorrow s most successful software ven
dors will triumph to the extent that they develop models that leverage the Internet as

a distribution mechanism, and use open source licensing as the rules-based system to

govern that distribution.

So, Why Not Freeware?

Let us assume that all of this is true. Open source is great because it enables upstart

competitors to undercut established vendors on price while providing their custom
ers Porsche technology at Pinto pricing. But if open source is so important because it

allows me to freely distribute my product over the Internet, why is freeware not

equally disruptive?! Stated another way, if the source code does not matter, and only
distribution matters, why not just give the software away as freeware and charge
users who require support? Why offer something (access to source code) that simply
does not matter?

The easy way out of this apparent quandary is to allow that while open distribution mat
ters most, open source code access is also important. But this does not get us very far. I

will therefore detail the reasons that freeware cannot match open source as a distribu
tion strategy. Most importantly, I will explain how the two matter most when they inter

sect, making distribution without access as hollow as access without distribution.

1 Larry Augustin originally needled me with this question, for which I thank him.

Open Distribution, Not Source
*
C 109

Don t view. Don t modify. What do you do?

As mentioned earlier, it is an indisputable fact that the vast majority of IT buyers will

never view or modify source code, even if offered the ability. There are numerous

reasons for this, but the most compelling one is that customers expect to pay for a

solution to their problems, and not merely a tool to help them solve their problems.

(More on this shortly.) No company can afford the time and human resources neces

sary to resolve all IT problems; therefore, they take "shortcuts" by buying software

that purports to fix certain problems for them. This applies equally well to closed

source software and open source software. Most IT buyers just want their software to

work, they don t want to have to fiddle with it.

By opting not to view or modify source code, does an IT buyer thereby opt out of

any and all of the benefits of access to the source code? Absolutely not. Just because

customers do not choose to exercise their rights to view and modify source code does

not mean they do not benefit from the right, even when not exercised. On one level,

the option to view the source code serves as a surrogate for the actual exercise of this

ability. As an example, because I can review the database code that Sleepycat deliv

ers to me, it forces Sleepycat to provide a higher-quality product than closed source

vendors would have to offer.

ROml Lefkowitz of AT&T Wireless gives a tangible example of how this works. In

June 2003, ROml related that he had asked his wife to solicit multiple contractors

bids for a home improvement project. Instead of gathering several bids, however,

ROml s wife procured only one bid. When he asked her why, she responded that she

figured the contractor would assume she had collected a number of bids, and so

would give her his best bid from the start. The option to exercise choice, then, served

her as a useful surrogate for actual choice.

In this way, access to source code motivates the code s vendor to provide a superior

product, knowing that it will be open for all to see. It also functions as a security

blanket for customers. Hopefully, they will never have to look at the source code. But

if Vendor X fails to deliver on its promises, or if it goes out of business, that cus

tomer will have the option (unpleasant though it might be) to have some other ser

vices firm support the stranded code. Source code access lets buyers rely on their

vendors... but not too much. Importantly, the more independent the buyer is from

the vendor, the lower the vendor s prices must be. More on this shortly.

As IT buyers have grown comfortable with open source projects, another benefit has

emerged. Initially, it is true that buyers will tend to want to avoid tampering with the

software they buy. Over time, however, as they grow familiar with a product (closed or

open), the buyer s developers will want to make tweaks here or there. They begin to

support themselves, in other words, because calling out for support takes unnecessary

time (and patience). In a closed source world, however, their ability to tweak the "solu-

110 * C Open Source and the Commodity Urge: Disruptive Models for a Disruptive Development Process

tions" they buy is limited. In an open source world, the Amazons of the world have free

reign over their IT. Source code access gives customers the ability to experiment with

and tailor software to their liking, if they choose, and on their own time table.

Other reasons have been suggested. Developers like to be creative. Like anyone else,

they prefer not to have self-expression manacled, and they choose to express them

selves in the code they write and modify. On a mailing list in June 2003, Frank

Hecker argued that access to source code is critical for developers at the heart of a

company s IT infrastructure. Such people want to be able to modify code, and so

must have access to source, because they will need to be able to fix any problems

they may download into the company. Outside the corporate firewall, Ben Tilly (on

the same email list) stipulated that while the majority of developers are not involved

in open source, access to source code is critical to that core of developers who do

participate. They are the lifeblood of open source communities and are the ones who
will openly extend assistance to newbies who just want the code to work without

getting their hands dirty.

All of which is a verbose way of repeating the earlier point: source matters, even

where it may not directly matter to the end user. Access to source extends benefits to

users beyond those chosen few who actually exercise the right to touch source code.

Source matters because choice matters. Choice matters for a number of reasons, not

the least of which is that choice drives down prices. And choice is amplified by open
source, not by freeware, which has its source code closed.

Open source. Open choice. Open wallet.

Many successful software vendors would have us believe otherwise. That is, they
want to sell suites of services that take care of all needs, that reduce complexity, and

that reduce choice. The primary perpetrator of this strategy is Microsoft, which, as

Dana Gardner of Yankee Group notes, wants to "make the end user any offer they
can t refuse to go Windows everywhere" (http://enterprise-wtndows-it.news/actor.com/

story.xhtmZ?story_td=22143). One major problem with buying into these monolithic

visions is that once in, the switching costs to go with another vendor are prohibitive.

By buying into Microsoft or any other vendor that holds out greatly reduced choice

as a way to accomplish moderately reduced complexity, a buyer surrenders his IT

destiny to that vendor. He upgrades when the vendor wants him to. It gets new tech

nology when the vendor chooses to innovate. (I would argue, and have on several

occasions, that Microsoft s market dominance has caused it to stagnate in terms of

innovation. When was the last time Microsoft s Office product significantly improved
over the last version? And yet the buyer keeps buying, because he finds himself on
the Microsoft treadmill.) And he pays whatever the vendor demands, because the he

has no other options. He is a prisoner of the vendor s universe, however expansive
the vendor pretends that universe to be.

Open Distribution, Not Source
**

111

Over time, buyers who condemn themselves to such vendor-controlled realities will

pay more for their IT, both in hard costs and in opportunity costs. Open source

offers the opposite vision: maximum freedom to shift among vendors (even while

staying with the same or similar code base). Open source therefore costs less in the

short term and, especially, in the long term.

If we step outside the IT world for a moment, this point will become even clearer.

My wife and I recently redid our landscaping, including our cement work. Or,

rather, we wisely chose to hire out the work. True, with a Dummy s Guide to Cement

(my "source code," as it were), even I might have been able to figure it out and could

have completed the project satisfactorily. Had I opted to do the work myself, the cost

would have been X. Because I could have done the work myself for X, my cement

contractor was only able to charge me 1.5X. Had he bid higher, I would have had

strong incentive to perform the work myself. I had access to the source, so his pric

ing power was curtailed. (In the same way, access to a closed binary, as with free

ware, does not accomplish this same effect of driving costs down.)

The cement contractor ended up performing shoddy work and walked off with a

portion of our money, for which he had not completed the associated work. Measur

ing it out, it will cost us 5-10X to hire a lawyer to compel our cement contractor to

satisfactorily complete his 1.5X worth of work. I happen to be a lawyer, but not one

that has ever actually practiced law, so I am stuck paying the lawyer s fees: $5007

hour to recover $1,500+ in payments owed to me by the contractor.

Perverse world, you say? Yes, I suppose so, but the point is that the delta between the

cost of me doing my own cement work and the cost of me doing my own legal work

is directly proportionate to the skill set involved and the artificial licenses set up by

the legal profession to keep would-be attorneys in "would-be land." I am effectively

barred from accessing the "source code" of the legal (and medical, among others)

profession, which drives up the price that I must pay.

Again, access to source code, whether in software or cement, offers choice, and choice

ensures lower prices. It does not matter that most people will never choose to do their

own cement work, just as it does not matter that most IT buyers will never choose to

view and modify source code. The important thing is that they could if they were so

inclined. That "could" is instrumental in dropping prices through the floor.

Such lower prices, then, allow the CIO to spend more money on developers who can

further customize software to meet that specific organization s requirements. Imag

ine that: IT that works for a customer, rather than against it. That is innovative.

Such innovation is what open source is all about, and is why it continues to make

inroads in the enterprise, in embedded devices, and everywhere else. Open source

brings choice, and choice saves money. Freeware does not engender such choice.

Meaningful choice is not created by cost-free technology; rather, choice is created by

112 * * Open Source and the Commodity Urge: Disruptive Models for a Disruptive Development Process

the freedom to manipulate code to one s personal (or corporate) advantage, or to

have it widely distributed in such a way that one can benefit from others exercise of

that freedom. Access matters little without distribution, and distribution matters lit

tle without access. Together, they spell the commencement of a new age of software

innovation, innovation that benefits vendors and buyers bottom lines.

Open Source Business Models

All of this may sound plausible enough, but we now need to trace through some real-

world business models that vendors use or could use to leverage the benefits of open

source to drive revenues and boost profits. Before doing so, it is important to note

that an
"open

source business model" means more than simply supporting Linux as

an operating system. In other words, the fact that my CRM system runs on Linux, or

that my hardware appliance has Linux as its core, does not make me an open source

company. An open source business model means that a vendor somehow engages

with the open source community.

With that said, I also need to stress that whatever the importance of open source, not

all companies must adopt open source to find success. Open source is the great corn-

modifier, but there will always be those who successfully evade that commodifica-

tion. Other industries prove instructive on this point.

Take retail, for example. Even as low-cost commodifiers devour middle ground in

this market, profits persist up the stack. Wal-Mart is the 8,000-pound gorilla of corn-

modification, cannibalizing groceries, clothing, and just about everything else on

which it puts its hands. Still, for all of Wal-Mart s success in low-end fashion, for

example, Nordstrom continues to win at the higher-end game. This is more than a

case of customer snobbery it has to do with an experience that Nordstrom delivers

(superior customer service) that Wal-Mart is structurally incapable of offering. (This

same phenomenon exists in coffee why are consumers so willing to shell out $4 for

a cup of coffee? Because Starbucks has defined a customer experience that tran

scends Maxwell House at home.)

Another example is the groceries market, as Charles Fishman highlights in the July 2004

issue of Fast Company (http://www.fastcompany.com/magazine/84/wholefoods.html). In

just a few short years, Wal-Mart has become the United States largest grocery chain, yet

the title of "Most Profitable Grocery Chain" and "Fastest Growing Grocery Chain" eludes

Wal-Mart (and its European competitor, Aldi). No, those titles go to Whole Foods, with

remarkable year-over-year growth in the face of a nationwide 2.5% annual compound

growth rate: 17% (2003), 21% (2002), 21% (2001), 23% (2000), and 14% (1999).

Whole Foods delivers an upscale grocery experience, offering organic foods and superb

quality, and Wal-Mart stocks its shelves according to its modus operandi: decent selec

tion at rock-bottom prices. Both chains have found their respective strategies to be

highly profitable everyone else has gobbled their dust. Whole Foods has registered

Open Source Business Models JJ 113

$188 million in profits over the last several years, and Food Lion cleared only $150 mil

lion with seven times as many stores and five times Whole Foods revenues. Safeway, for

its part, lost $1 billion in the same period on even greater revenues. The takeaway?

There is no room in the middle for undifferentiated players. One either commodifies or

evades commodification through innovation. Everyone else languishes.

Both Source (a.k.a. Mixed Source) Model

So, the first business model is for the technical innovator that refuses to join open
source commodification at all. But what about those companies that opt for a "both

source" model, whereby they offer both open source and proprietary software? This

model has promise and peril, requiring the vendor to walk a fine line between the

model s divergent business requirements (low-end commodification/standardization

coupled with high-end specialization). To the extent that a company marries the two,

it must do so with a clear understanding of open source complements and substi

tutes to its proprietary product portfolio.

Both source offers a way to fill in the gaps left by open source, and to charge a pre

mium for this "service," while still delivering open source software. Such a model

seems to be ideal for established players that cannot abandon existing customers of

closed source products, and blanch at the thought of losing existing profit margins.

Of course, whether a vendor can avert the open source "threat" depends upon
whether open source has created a viable substitute to its product. If so, head-on

competition with that open source project is likely futile unless it can move signifi

cantly upward in the feature set. Even if it can, competing against free and
"good

enough" is exceptionally difficult.

A both source strategy makes more sense where the vendor can define and contrib

ute to open source complements. In economic terms, a complement is something

that completes a whole; in software terms, it is a component of a software solution.

So, just as French fries may be considered a complement to a hamburger, so, too, is

Apache a complement to IBM s WebSphere product. Importantly, the more comple

ments that exist for a given product, the more desirable that product becomes for

customers, so vendors want as many low-cost, high-quality complements to their

products as possible. Oracle likes Linux and x86 hardware because it drives down

the total cost of a customer s database solution... without lowering the cost of Ora

cle s software. Customers, thus, can buy more Oracle software, which gives Larry

Ellison more time on his boat.

So far, this sounds like a reasonable defensive strategy for vendors that want to toe-

dip into the open source community without getting very wet. But both source also

allows vendors to take a scorched-earth agenda against their competitors, by skill

fully choosing to build open source complements to their proprietary software, com

plements which cut directly at those areas that competitors have chosen to retain as

114
*
C Open Source and the Commodity Urge: Disruptive Models for a Disruptive Development Process

proprietary. Of course, such a strategy must bear in mind the distinct possibility that

the opposing vendor will then choose to open source pieces of its portfolio that

injure the first vendor, creating a lot more open source software, but not necessarily

any profits for either company.

Still, it is an open question whether this is a solid strategy against upstart competi

tors with lower costs who can undercut a proprietary product s margins. In addition,

a both source strategy works best for vendors with products that have respectable

market share. Slapping open source on or around an also-ran product will not sell it.

Good technology, good service, and good sales/marketing sell products. Open

source, by itself, is as much a losing strategy as closed source, by itself.

Open source complements to a market leader s products make that proprietary prod

uct more valuable by lowering the total cost of the product. Hence, while both

source may be the easiest step for a closed source company to make, it will help the

vendor only if its products were already competing well against other proprietary

products. Again, both source offers no panacea for market losers. The lesson? Com

panies should adopt the both source strategy when they are on top of their games,

instead of when they are losing the final sets of their matches. For market losers, a

better bet is to make the difficult transition into a pure-play open source vendor, as

defined shortly.

Professional Open Source (a.k.a. Services) Model

The dirty little secret of open source is that the term open source community is some

thing of a misnomer. In general, the actual number of contributors to any given

project, including the Linux kernel, is tiny. Thus, to "own" an open source project

requires little outlay of human resources in terms of numbers, though it may require

a significant amount of time to build reputation capital within a given open source

community. (Newbies to the Linux kernel, for example, should expect to put in two

years or more before they can hope to attain "committer" status in the kernel hierar

chy.) Despite the low number of developers required to corner the market on an

open source project, the importance of doing so is massive: employing a majority of

the developers on a given project roughly equates to intellectual property owner

ship, as explained earlier.

For this reason, companies that spawn open source projects e.g., JBoss are able to

completely open source their code without abandoning pricing power. JBoss, for its

part, employs roughly 85% of the developers who contribute to the JBoss open
source project. JBoss offers its code under the Lesser General Public License (LGPL),

which allows users a wide range of action vis-a-vis their code, including the right to

fork the JBoss project and start JBoss II.

But no one does that, for reasons already detailed.

Open Source Business Models . * 115

Because of the heavy JBoss "ownership"
of the committers to the project, the com

pany does not save a great deal of money on development costs. It functions much
like any closed source company, except that its development is open for public view

and consumption. Any appreciable development savings derive from the bug finds/

fixes that JBoss receives from its development community.

Still, the professional open source business model is not really about development

savings. Rather, it is about maximizing distribution of one s product; getting it

beyond the purchasing firewall/bureaucracy bottleneck to plant the product in the

hands of its developer end users so that they can try and then revisit the professional

open source vendor for support/service contracts. To get approval to use BEA s

Weblogic or IBM s WebSphere, a developer would need to go through a cumber

some process. To use JBoss, she simply needs to click "Click here to download." And
while the developer might choose to support herself through newsgroups or other

online fora, in production situations she will generally turn to the source of the code

(in this case, JBoss). This is the classic open source model, though it is only now

starting to be exploited effectively.

Dual-License Model

The dual-license model has been popularized by MySQL, but has been around for

some time, most notably deployed by Sleepycat and Trolltech. In the case of a dual-

license vendor, that vendor employs not most, but all, of the developers who contrib

ute to the code. Because it employs all of the developers, it also owns all of the copy

rights to its work. Then, as the owner of the copyrights, it is entitled to license its

software under one or more different licenses.

However, the fact that it owns the copyrights and employs the developers begs the

question as to what benefit, if any, it derives from its open source status. The answer,

as with the professional open source model, lies in distribution strategy. For a dual-

license vendor, open source is less a matter of development and more a matter of dis

tribution for open source vendors. Yes, the dual-license vendor derives benefit from

outside developers who contribute code (though MySQL, for example, tends to

repurpose/rewrite incoming code to help it better fit its existing code base) and bug

fixes, but its primary benefit is in the ability to broadcast its product to the world

with customers benefiting from lower prices and less lock-in.

Also interesting, though not a benefit touted by the primary adopters of the dual-

license model (MySQL, Sleepycat, Trolltech, and now SugarCRM), is the fact that the

dual-license strategy provides the customers with a mechanism to buy their way out of

the GPL, if consider this desirable. This is of particular benefit in the embedded world

where, for example, Linksys might receive GPL d code from Broadcom and might want

a closed source license to that code, so that it will not have to open source the software

running its routers and access points (a purely hypothetical example, of course...).

116
*
C Open Source and the Commodity Urge: Disruptive Models for a Disruptive Development Process

db4objects is promoting its embedded database with precisely this message, one that

customers appreciate because however much a vendor may prefer the GPL or another

open source license, the fact remains that it may not always be the best fit for a given

customer. As such, the dual-license model offers customers a way to pay for the right to

choose the license under which to receive software.

ASP Model

Such are the prominent open source models that are easily recognized as such: open
source business models deployed by open source companies. But, as Tim O Reilly

has been telling the industry for years, "open
source" is a much bigger tent than we

may recognize. Tim includes such "infoware" vendors as Google and Amazon in his

open source tent. The common denominator between the two? Internet infrastruc

ture powered by open source (Linux and a great deal else), plus an architecture that

promotes participation that makes the infoware increasingly valuable.

The enterprise IT industry has also been moving toward a related model for stan

dard enterprise applications, calling it utility computing, on-demand computing, and

a range of other names. In this model, IT vendors deliver computing power in a util

ity fashion: Enterprise Consumer X gets the computing cycles when it needs them,

instead of buying all of the hardware/software upfront.

Importantly, customers in this model buy IT (including software) as a service, rather

than as a standalone product. As such, customers do not really buy software at all

they buy solutions to their business problems. Whether the
"guts"

of that solution are

open or closed source does not matter anymore. Customers simply pay for value,

delivered as a service: SP (service property) rather than IP (intellectual property).

This sounds much like software s ASP model, in which software is delivered to the cus

tomer over the Internet, hosted on a central server by the vendor, with customers pay

ing for the value they access over the network. A prominent example is Salesforce.com.

Whether the software underpinning the service is closed or open source becomes irrel

evant. The requirement to release modifications to a given open source project is trig

gered by distribution: so long as the code itself is not actually distributed (and only the

resultant service dictated by the code is), open sourcing of modifications is not

required, but voluntary.

Other Models

The aforementioned business models are the primary models in use today by most

open source companies. However, some of the most interesting new companies

employ equally interesting (and innovative) business models, generally altering the

way open source software is supported. For such companies, the real customer bene

fit of open source is the availability of source code. But, as noted, major vendors such

as Novell and Red Hat, which tie their support contracts to specific product builds,

Open Source Business Models X 117

obviate this benefit. Gluecode and Specifix resolve this irony and may point to

tomorrow s most successful open source business models.

Managed source model

Gluecode incorporates three levels of source code support into its model. First, Glue-

code conglomerates various Apache packages, tests them, and generally makes them

play nicely together so that customers need not worry about visiting Apache.com for

themselves. Second, Gluecode develops its own proprietary software to extend

Apache s reach and thereby provide a compelling solution for portals/business pro
cess management (BPM). Third, and unique to Gluecode, the company offers source-

level support to its customers, allowing them to check in their code to Gluecode s

CVS repository. Gluecode runs the customer s code against test suites to ensure the

customer s modifications or additions work properly with Gluecode s open+closed

codebase, enabling the customer to become something more: a development partner.

Code-level service model

Specifix does something similar. Focusing on embedded and server deployments of

Linux, Specifix allows its customers to modify Specifix s Linux distribution to meet

their particular requirements. Instead of invalidating their support agreement with

Specifix by doing so, Specifix tracks exactly where the modifications were made and

allows the customer to support its own modifications, while continuing to support
the original Specifix distribution. The customer may, in other words, opt for the

"road less traveled," but Specifix is happy to maintain the more-trafficked road for

them, keeping it parallel with the customer s chosen divergence.

Conclusion

Open source propels software toward Commodity Land, a happy place where cus

tomers pay for real value and vendors compete on that value, not intellectual prop

erty lock-in. Each of the open source business models detailed in this chapter will

help to further this trend, making open source mainstream and possibly displacing

the traditional, IP-based model as the default.

We are thus on the cusp of a Kuhnian paradigm shift, one that will fundamentally

alter the way IT vendors create, sell, and distribute software. Once apparently sty

mied by the restrictions that open source licensing places on traditional business

practices by IT vendors, open source vendors are now finding that open source

licensing creates as many opportunities as it closes, changing the nature of software

competition for decades to come. This means that incumbent and emerging IT ven

dors must understand the new rules of engagement to compete effectively. Whether

they like to admit it or not, open source will force every software vendor to come to

grips with omnipresent, ravenous commodification.

118 ^ C Open Source and the Commodity Urge: Disruptive Models for a Disruptive Development Process

Some may opt for technical innovation over business model innovation, with vary

ing degrees of success. However, such innovators should recognize that while

copyright and patent provide potent protections, they also put the vendor in an

adversarial relationship with the customer. As such, these traditional intellectual

property tools hurt customers as much as (or more than) they do competitors, and

will put them at a disadvantage against open source competitors who offer custom

ers choice and value at lower prices. Open source, then, allows vendors to lay

waste to their competitors profit margins by lowering their own costs of distribu

tion, sales, marketing, and development, while simultaneously blessing their cus

tomers with increased IT flexibility and a more finely tailored approach to solving

their business problems.

Open source, then, offers a new way to innovate, a new way to compete, and a new

way to win.

Conclusion ** 119

kf CHAPTER

Stephen R. Wall!

Under the Hood: Open Source

and Open Standards Business

Models in Context

People debate regularly whether open source software is
"good

for business," and

how one makes money on something given away "for free." People raise concerns

over the commoditization effects of open source, 1 and portray a gloomy road ahead

where open source software will "eat its
way" up a stack of functionality to the logi

cal conclusion where software has become valueless.

Standards as a commoditization driver have been well understood for quite some time

across many industries. A standard exists to enable multiple implementations. The eco

nomic argument is that they serve to broaden the market for all producers while foster

ing price competition (which also fosters production efficiency) for the benefit of con

sumers. Industry associations of vendors support such work where it expands their

market opportunities in complementing areas. Governments support such work

because of the
"good"

economic effects. Seldom does one hear complaints about this

commoditization effect, and vendors continue to participate in the development of

standards and compete on implementations regardless of that effect.

In this chapter, we will take a look at traditional working definitions of open stan

dards and open source software focusing on the veneer of differences, then step back

1 "Will Open Source Middleware Commoditize J2EE?", Nov. 5, 2004, http://linuxworld.com/story/

46957.htm; visited Nov. 9, 2004. Also: Paula Rooney, "Open Source Will Commoditize Storage,
Databases and

Security," Jan. 20, 2004, http://www.storageptpehne.com/hardware/J7500067;
visited Nov. 9, 2004.

and look under the hood at a broader business context for the dynamics at work to

provide a business model where standards and open source software can be seen in

context.

Open Standards

A standard can be a specification, a practice, or a reference model. It is used to define

an interface between two (or more) entities such that they can interact in some pre

dictable fashion and to ensure certain minimum requirements are met. Standards

exist to encourage and enable multiple implementations.

It is important to put some simple perspective on the standards discussions that fol

low, as books can be written about this seemingly dry subject. We will look at the

context for standards defined by their development and use, a process for develop

ing and maintaining standards, and a set of implementation issues such as intellec

tual property concerns, conformance and certification concerns. Finally, we ll dis

cuss the history of the concept of
"open

standards."

Standardization efforts are typically divided into various categories, but the classifica

tion systems are often orthogonal. For example:

Standards can be categorized by the type of development organization e.g.,

national or international body, industry and trade associations, and consortia.

Standards can be viewed as industry voluntary efforts or government-regulated

efforts.

Standards can be thought of as formal de jure developed specifications, or market-

dominant de facto product technologies.

All standards live within a context of development and use. Many formal standards

are developed by national bodies or international organizations such as ISO. These

standards often define procurement policy for government organizations and large

enterprises alike. Industry and trade associations develop standards relevant to their

expert and specialized constituencies. In the information technology space, for exam

ple, the IEEE has a standards arm, and historically CBEMA (now NCITS) and Ecma

International acted as standards development organizations in the U.S. and Europe,

respectively, for IT standards. Each of these three organizations was accredited

within its national and regional geographies to produce standards that could be later

adopted by the relevant nationally or internationally sponsored standards organiza

tion to prevent overlapping efforts, and to build on the relevant expertise within dif

ferent industry groups.

Narrowing the focus even further, consortia of vendors often arise within a specific

area of technology within an industry to develop standards and specifications. The

122
*
C Under the Hood: Open Source and Open Standards Business Models in Context

consortia often try to build specifications more quickly to expand a particular mar

ket, feeling that the more traditional organizations are too slow to deliver standards.

We can categorize standards differently if we bucket them between regulatory versus

voluntary standards. Government regulation defines a separate set of concerns over

the voluntary work of many organizations within industries. Such government

involvement is often driven by economic concerns for the public good (e.g., commu

nications-related standards) or safety issues (e.g., pharmaceutical testing and registra

tion requirements or vehicle safety). Regulatory-based standards will not be dis

cussed further in this chapter because the focus is on the role of standards and open

source in market-dynamic areas rather than government-regulated areas.

Another categorization attempts to discuss the difference between de jure standards

developed in a consensus-based process and de facto standards. A more accurate

statement might be that de facto technology describes a market-dominant product,

rather than a specification for interoperability open to all implementers.
2

Common examples of voluntary information technology standards across this organi

zational spectrum include SQL, HTML, TCP/IP, and programming language stan

dards like C/C++ and C#.

Standards act as a yardstick against which multiple competing implementations can

be judged in the marketplace to make sure that certain basic requirements are met.

Vendors compete on implementation beyond the standard to establish competitive

differentiation in the market. Ultimately, customers choose the product that does

more than simply meet their base requirements. It is this relationship among specifi

cation, implementation, and competitive differentiation that provides basic interoper

ability among vendors, drives competition, and spurs innovation.

All standards organizations have rules about participation, construction, adoption,

and amendment. They establish processes for how meetings are carried out to pro

mote fairness of discourse and prevent anticompetitive practices. Standards develop

ment organizations also put in place intellectual property rules to ensure partici

pants are aware of the intellectual property landscape with respect to the standard

under development.

Most standards bodies require participating holders of essential patents to announce

the existence of such patents, and to make them available on "reasonable and non-

discriminatory" (RAND) 3 terms if an implementation of the standard would require a

license to the patented technology. Under RAND terms, patent holders cannot dis-

As we shall see, Clayton Christensen has proposed a situation that says there is market pressure
that can change de facto technologies into de jure standards.

While each organization s rules are stated somewhat differently and with different levels of

formality, a quick look at the governing rules of the IEEE, ISO, IETF, and Ecma International

shows a remarkable similarity.

Open Standards *C 123

criminate against a particular company or a particular platform. Standards organiza

tions supporting such patent policies ensure that developers interested in delivering

standards-based products can do so, while ensuring developers that have invested in

a particular invention still have their investment respected.

It is important to remember, however, that no standards development organization

can speak for the intellectual property of developers that are not participants in that

organization. Standards development organizations structure their patent policies

this way because they cannot be the policing organizations nor bear the liability for

patent infringement cases from nonparticipants. They are neither funded nor set up
to do so. Indeed, if they took on this role, they would likely collapse under the fiscal

burden and serve no one.

The interesting thing to observe is that while standards exist to encourage multiple

implementations, patents are government-enacted legal tools to protect a single

implementation. Patents exist to allow the developing company government-

enforced, time-limited legal protection of an invention by preventing others from

building the invention. It allows the inventing company to recover the costs of bring

ing an invention to market in return for publishing the idea for future use by the

broader market. A patent is in some regards the antithesis of a standard. Standards

are to trade agreements as patents are to tariffs. By definition, they serve different

purposes in the economic landscape.

Just as standards organizations are not organized or funded to handle intellectual prop

erty liability claims, neither are they typically the conformance certifying agencies for

implementations for the standards they produce. Conformance requirements in the

standards and specifications are typically simple "claim" style i.e., you provide the

functionality required by the standard and claim conformance to the standard. Organi

zations that care about conformance then take on the fiscal and legal responsibility of

verification around the conformance claims. For example, in the government space in

the U.S., the National Institute of Standards and Technology (NIST) developed a pro

curement process (FIPS4) and certification testing process for the standards that it

cared to use in those procurements. The government was acting appropriately to pro

tect and serve the public good in federal procurement policy essentially putting pub
lic tax dollars where its mouth was to improve the return on investment. In a commer

cial setting, The Open Group (nee X/Open) as a market consortium handled

conformance claims and liability for its specifications. Beyond the testing requirement,

warranties of conformance are required and a brand license is signed which is tied to

the trademark usage associated with the standards it produced. Companies that wanted

to use the trademark on their products in the market had to pay royalties. The X/Open
standards were developed through the organization and a company paid for its seat at

4 FIPS stands for Federal Information Processing Standards.

124
*
C Under the Hood: Open Source and Open Standards Business Models in Context

the specification setting table through its consortium membership dues. Conformance

certification, on the other hand, was funded through the cost of trademark use.

If standards act to define a base functionality to encourage multiple implementa

tions, essentially the greatest common denominator for a specific technology, they

help create a commodity. This results in a constant, healthy tension among the stan

dards bodies participants as they work with each other on the standard, while simul

taneously vying for market share with their different products.

The term
"open"

with respect to standards became a mantra in the late 1980s and

early 1990s, and was tied to the concept of
"open systems." As Cargill observed,

"open systems"
was marketing-speak for the idea that if all the vendors would just

build their computing products to
"open" standards, the consumer would be able to

build data processing systems by mixing and matching information processing hard

ware and software modules in much the same way that one could mix and match ste

reo components to build the desired system.
5

"Open systems" was a description of

the architecture the consumer thought should exist. Unfortunately, the complexity of

interconnected data processing systems doesn t lend itself so readily to the metaphor
of a single-purpose device (i.e., the stereo system) and the ability for plug compatibil

ity between stereo components to solve all the attendant complexity.

"Openness"
became a quality attributed to the standards that would enable open sys

tems. The openness was an attribute of the creation process (the standard was built

in some form of public, consensus-based process open to all participants) rather than

an attribute of implementations of the standard.

The development model for a standard is unrelated to the development model used

for the implementation of that standard. It is equally possible for a standard (open or

otherwise) to be implemented in a closed proprietary software product or in an open
source software project.

Open Source Software

Open source software (OSS) is a term applied to a collection of software development,

licensing, and distribution practices. A lot has been written about OSS over the past

decade, as various open source projects gain market importance and the license models

demonstrate economic significance. Eric Raymond s original treatise6 on the develop
ment practices remains relevant. The Open Source Initiative (http://www.opensource.org)

publishes the definition of the requirements a license must meet to be considered an

5 Carl Cargill, Open Systems Standardization: A Business Approach (Upper Saddle River, NJ:
Prentice Hall 1997), 70-71.

6 Eric Raymond, The Cathedral &&gt; the Bazaar (Sebastopol, CA: O Reilly Media, 2001). The original

essay was published in 1997.

Open Source Software ** 125

"open
source software" license. I will focus on a group of attributes of OSS projects that

sets up the economic discussion to come.

OSS projects are interesting "buckets" of technology. Successful OSS projects share a

number of attributes.

For instance, distributed communities with good software development practices

develop technology packages that satisfy well-defined needs.

Software quality is a measure of community activity (i.e., the developer customers).

Contributions reflect the individual economic considerations of the contributor

and are based on selfish asymmetric value propositions.

The projects reflect their Unix history of loosely coupled component architectures

with well-defined interfaces that make it easy to assemble larger solutions (e.g., the

LAMP stack is assembled from Linux, Apache, MySQL, and Perl/Python/PHP).

OSS projects develop software packages in a distributed community where the core

developers that inspired the project act as a hub for the evolution of the software as a

"benevolent dictatorship." Just like all successful software projects, successful OSS

projects support a strong software engineering discipline and ethic at the project s

core. Essentially, good software is developed by good software developers.

What makes the software
"open

source" is the licensing model. While a wide variety

of licenses are considered
"open

source licenses," the basic common denominator

(without relisting all the requirements from the Open Source Initiative) is that the

software s source code is always freely available and users can modify it without

restriction; however, requirements associated with distributing the software may
exist. In similar fashion to standards efforts supporting a lack of discrimination

(either in participation within the context of their community or in their intellectual

property engagement goals), OSS licensing discriminates against no one. Anyone can

participate in the community development of the software. Anyone is free to use the

software. Anyone can see the source code. Anyone can distribute the software. In

each case, requirements may be imposed by the license or reputation that must be

earned in the community, which would lead some to not want to participate, but

nothing inherent in the process prevents participation, use, or distribution.

An interesting dividing line in the licensing schemes is whether the license is consid

ered "viral." A reciprocal license such as the GNU General Public License (GPL)

attaches itself to new software by requiring that if the software is modified and dis

tributed, the license is attached to the new software. This forces the
"open" aspect

upon new software, keeping the source code publicly available. A company may be

wary of publishing the source code to its software, as it may contain trade secrets or

other third-party licensed software for which it doesn t have the ability to publish the

source. The classic permissive licenses arose in academic settings (e.g., the Berkeley

126 x * Under the Hood: Open Source and Open Standards Business Models in Context

license and the MIT Project Athena license) and had no requirement to associate new

work with the license. This class of licenses was very liberal in what was allowed, and

a company could easily take software, modify it, and not publish the new source

code.

One of the most interesting aspects of OSS development is the economics of the

community participation. Surveys have been run and much has been written about

the rationale for participation.
7 The

"simple"
economics is that participants in a com

munity get more than they give. It is a normal selfish asymmetric value proposition.

To understand that statement, think about context for a moment. Many people in

many walks of life use and value their skill sets differently in different contexts. A

writer might be a technical writer or communications writer for a corporation as her

paying job, but still use that same collection of writing skills teaching an English as a

Second Language class in the evenings, working on a writing project with her child s

class at school, and writing a sonnet to a loved one. In each case, she values her skill

set differently, and the reward accordingly. Software developers are no different. The

interesting aspect of community is that corporations are equally economically ratio

nal in their participation. Developers and corporations participate in OSS projects

because of the same simple asymmetric value proposition. Many companies partici

pate in OSS projects and draw upon the software to deliver the products and ser

vices upon which they base their revenue streams. We will look at this a little more

closely in a moment.

Coupling the license and distribution model that ensures the source code is freely

available, with a core project team that is disciplined allows for the community effect

of OSS development to shine. The community of interest in a particular project can

directly contribute changes and bug fixes. While there may be orders of magnitude of

difference in the number of bug reports submitted, down to the number of bug

reports submitted with proposed fixes, down to the number of
"good"

fixes that meet

the bar defined by the core project team, there is definitely a net gain for the project,

both from a testing and a bug fixing point of view, as well as the opportunity to find

new talent for the project that wants to participate.

The Real Business Model

Customers view solutions as a network of related "bits" that have to come together in

some definable fashion to solve their IT problems. This network can be defined with

nodes representing various technology objects and the paths between nodes represent

ing the relationships. This is a very informal network, but very real. For example, a

7 Most notable were the surveys by the Boston Consulting Group (http://www.bcg.com/publications/

pub/ication_view.jsp?pubID=935&lt;S language=Eng!ish, Dec. 15, 2004) and the broader FLOSS

survey done at the University of Maastricht (http://www.in/onomics.nl/FLOSS/report/index. htm,
Dec. 15, 2004).

solution for a new retail inventory management system will include nodes representing

the existing application systems to which the new retail system must interface, com

puter resources on which it will run, the programming language environment in which

it will be developed and maintained, the staff and their experience and skill sets that

will develop and then maintain the new system, databases with which it will need to

interact, . The other application systems to which the new retail inventory system will

need to interface have their own historical networks. The platform resources may rep

resent a different network view if multiple application systems share the fundamental

computing platform. Companies define architectures for their IT functions to attempt

to simplify the decisions that need to be made, and often publish these as internal pro

curement and development standards. History also counts in the network for exam

ple, some shops always buy "Unix" hardware or always program in C or Java, because

that is how their resource history has developed.

Turning the discussion around to the vendor-centric product perspective, Geoff Moore

defined a model8 in 1991 for technology adoption that suggests that once a market

starts to develop, a company best leads by providing a customer the best "whole prod

uct solution." By this he means that the vendor offers its core value product proposition

to the customer and then needs to wrap as much around that product as it can to

present a
"complete" product solution to the customer to meet the customer s broader

needs, essentially mapping as much of the customer solution network as possible.

Another way to think about this is that the vendor wants to provide as many comple

ments as it can to its core product offering, covering as much of the customer s solution

network as is feasible to present the best (most valuable) solution in the customer s eyes.

The business of a vendor would then be to ensure that the complements were as

inexpensive as possible, indeed commoditized if possible, so that the whole solution,

from the customer s perspective, is as inexpensive as possible but the lion s share of

the revenue would come to the vendor through its core offering. Several business tac

tics and tools are available to the vendor to try to drive these complement spaces:

Traditional buy-versus-build strategies can be used to ensure that as much as of

the customer s solution is provided through the vendor s own brand, regardless

of whether the complement products are offered as add-ons or are bundled

directly with the core revenue stream.

Develop a rich ecosystem of add-ons by encouraging developer and partner net

works to provide a richer whole solution to the customer. Publishing propri

etary specifications for the complement space enables more partners to develop

businesses in the complement spaces.

Develop tool spaces that help add complements to the complement ecosystem.

8 Geoffrey Moore, Crossing the Chasm (New York: Harper Collins, 1999).

128 * C Under the Hood: Open Source and Open Standards Business Models in Context

Provide certification programs around the core technology to ensure that there

are lots of service professionals to help the customers complete and support their

solution. Indeed, a company might have its own consulting services arm for

parts of a solution, and provide certifications for other parts of a solution.

Taking this view, a company s assets and offerings also form a network of related

products and services it matches against the customer s solutions network through

the sales and marketing functions. Each node in the network has cost, risk, and reve

nue models associated with it, and as long as the overall revenue model is greater

than the sum of the costs, the company will be profitable.

It is important to remember, however, that no company exists alone in the market to

solve the customer s problems. Each vendor in a particular space must have different

product networks to allow a differentiation in its sales pitch to the customer. Differ

ent vendor companies will also behave differently in their hiring and acquiring strate

gies to shore up their "whole product offerings."

In addition, it is important to note that one can now look at intellectual property (IP)

tools (and by that I mean trademarks, patents, copyrights, and trade secrets) in con

text. Each of these four legal property types or tools (regardless of legal and geo

graphical jurisdiction) provides a different set of legal protections at different costs.

One is far more likely to spend heavily and strategically with IP protection tools in

the spaces defining one s core product value proposition or in spaces in which one

has the greatest investment, than farther out in the complement spaces of one s prod
uct offering network. Indeed, in the complement spaces, a vendor may aggressively

publish (or sparingly strategically patent) to ensure that no other vendor can patent
in the complement space and raise the prices on that complement.

If we now stan to consider open source and open standards in this core-complement

context, we see that they are simply additional tools in the tool chest to drive comple
ment spaces. Let s look at each separately for a moment.

Open Source Complements

It becomes very easy for a vendor (OEM, ISV, or systems integrator) to bootstrap a com

plement product or project space for its core value proposition to its customers using

open source software directly. The projects are polished to product readiness either

within the company or within the community itself. To
"buy"

versus "build" as comple
ment strategies for a vendor, we can now add "borrow" and "share." If a vendor joins an

existing community, it can polish the OSS project to product readiness to complement
its core value proposition to its customer. If it starts its own project, it can be used as the

hook to find and engage with new customers around the rest of its core offering.

The engagement in the community is actually a very leveraged conversation directly
with people interested in the community s project and then possibly the company s

offerings. As people cross the line from community participant and software user to

Open Source Complements
*

1Z9

potential customer, they are self-selecting the vendor s services. This is a very efficient

way to find new customers. This does not mean one should consider the community as

a mass-marketing broadcast channel (it s not), but rather, as a public conversation with

one s customers and potential customers. This is not for the faint hearted. Unlike a tra

ditional "Go to Market" plan, the technical people have real-time unmanaged discus

sions with the customers. 9

The vendor s challenge becomes ensuring that products remain products and com

munities are communities. Starting a community project is not that risky if the ven

dor plays by the rules, staffing it with good software developers that will lead the

community well, and understanding that the real return is the conversation they have

with customers, and the product complement effect. The
"community"

at large does

not exist to work for free improving a company s products. This mistake is still being

made despite the public experiences of the past.

The community leadership is a benevolent dictatorship. Sponsoring the community (or

earning your place in an existing community) does give the vendor the opportunity to

manage things on its own terms. Software stability is maintained through the commu

nity project by the leadership. Project direction is developed by the community leader

ship and people that have joined the community and earned their position of trust.

There may not be a road map with a view three to five years out, as is almost necessary

in a product, but the complement space doesn t need the rigor of the core product.

Viewpoint becomes important. A customer s view of the need for a road map around a

solution may not map to a vendor s view of the need for a product road map.

While a number of relatively small companies are using OSS in their businesses,

large vendor participation is very interesting. [Caveat lector: the following examples are

observations from the author and do not represent any direct knowledge of these vendors

business plans or models.]

IBM has made three big plays: Apache, Linux, and Eclipse. IBM joined the Apache

community six years ago, borrowing a web server while selling WebSphere. It joined

the Linux community four years ago while managing the commodity curve on the

AIX product line and using it as a competitive shot into the Sun server market. Most

recently, it has begun a "share" project creating the Eclipse project out of technology

it acquired (and then it acquired Rationale).

In joining the Apache community, IBM doesn t need to maintain its own web server

team and can focus its efforts on WebSphere instead. In the Linux community, it can

focus on the parts of the OS that best meet its needs. Linux is clearly becoming the Unix

server replacement over time. IBM s AIX product space will be replaced. It can either

The first thesis in the Cluetrain Manifesto is "Markets are conversations." Indeed, most of the 95

theses are highly relevant to the discussion (http://www.duetrain.com/fimanifesto, Dec. 15, 2004)

130 I * Under the Hood: Open Source and Open Standards Business Models in Context

actively participate and position itself on the leading edge of the curve, or wait until its

product space is consumed.

SAP released a complete modern relational database for free in August 2002 to drive

its core business into the mid-tier customer space where the customer may not

already have an enterprise-class database and may not be willing to pay the "Oracle/

IBM/Microsoft" tax to get SAP R3. It was released under the GNU GPL after a two-

year, 100-person investment in updating the acquired Adabas technology. SAP then

partnered with MySQL AB in Sweden to
"manage"

the database community.

Sun Microsystems worked in the GNOME desktop community to develop, acquire,

and contribute the accessibility features it needed to meet U.S. government procure

ment policies to complement its Linux workstation offerings. For a relatively modest

investment in the tedious and difficult accessibility technology, it is getting an entire

full-featured desktop environment.

In each case, the corporation is getting more than it gives, developing a complement

rapidly around core offering(s). They gain time-to-market for the complement at a

reduced investment. While initially met with skepticism when a large company joins

an existing community, as long as that company plays by the community s rules with

respect to engagement and quality, it can become as accepted as any other active par

ticipant. Depending upon the nature of the product relationship to the core and

company commitment, the company may make best efforts to hire key community

developers. This is not altruistic, but neither does the company expect the develop

ers to change their community engagement. It gives the company deeper insight into

the community it is looking toward for support as it develops the complement.

There is a competitive edge to OSS community development as well. Often the com

pany takes advantage of the reciprocal aspect of the licensing to salt the intellectual

property fields around it by aggressively publishing prior art, holding the comple
ment costs down, and preventing competitors from directly monetizing their origi

nal investment in the community project software. For example, SAP is not in the

database business and so may feel comfortable publishing the investment in SAPDB

(now MaxDB), but it probably doesn t want Oracle, Microsoft, or IBM directly mak

ing use of that investment in their respective database products. In this case, the

reciprocal license is the most business-conservative license SAP could choose. As well

as driving a complement directly, the community engagement also allows the ven

dor to work closely with partners, customers, and potential customers to build the

relationships they will need to sustain the business over time.

The other competitive aspect happens when you consider two competing vendors

product-centric networks, and how they appear to the customer. The customer is

looking at things as a "whole product solution" and does not really think (or care)

about what is core or complement from the vendors perspectives. A vendor can

develop a complement community directly in the path of a competitor s core value

Open Source Complements ** 131

proposition to a mutual customer. It need not be a deliberate move and the sole pur

pose of a community; it is the icing on the cake of the multifaceted approach of a

business in using OSS development and engaging with its customers.

Small companies can also easily use the OSS buckets to bootstrap product comple
ments. Clayton Christensen s original research10 around disruptive business models

shows how small companies assemble off-the-shelf parts into underperforming prod
ucts compared to the industry norm, offering those products in their own niches

with different business models. As the sustained innovation around the new disrup

tive product develops, it eventually becomes mature against the yardstick used to

judge the incumbent but at a better price for the performance, and the incumbent s

business is disrupted. Consider the development of the Linux operating system
from its inception in 1991, delivered by a university student, its growth in educa

tional use, to simple infrastructure servers, to the point in history where it is pres

ently challenging the traditional Unix vendors products (though it has, in some

cases, become too complex to teach anymore 11
).

There is also a situation, as we shall shortly see, where a product market hits the point

when customers start to be overserved, and there is a call for standardization. This

means that OSS components that already represent a package with well-defined inter

faces may be a rapid way to bootstrap a
"good-enough" product into that market.

One thing to note in this discussion using the network of core and complements

together is that there is no "stack" of technology per se. Think back to the earlier dis

cussion of customer-centric solution networks and vendor-centric product networks.

Vendors may see their world as a stack with their valuable core at the top and all the

commoditized complements below, but in reality, it is simply their view through their

own product stack and its relationship to the customer and their partners. A chip man
ufacturer views the stack very differently from an operating system company or from a

middleware company (hardware design in silicon is where the value is, with operating

systems and middleware and apps being less and less interesting to the chip manufac

turer). The terminology of eating up the stack may have more to do with the position

in which the vendor perceives itself.

Open Standards Complements

Clayton Christensen further observed in his research 12 that as companies begin to

overdeliver functionality in their product lines faster than customers are able to use

the new functionality and therefore faster than customers are willing to pay for it

10 Clayton Christensen, The Innovator s Dilemma (New York: Harper Collins, 1997).

11 In interviews in February 2003, a number of university OS professors made reference to the

current revision, with the addition of symmetric multiprocessor suppor, becoming too complex
to teach. As a result, they were basing their course work on earlier versions of Linux.

12 Clayton Christensen, The Innovator s Solution (New York: Harvard Business School Press, 2003).

132 ^ C Under the Hood: Open Source and Open Standards Business Models in Context

the market begins to call for standardization. Indeed, prior to the point where they

begin to overdeliver, the market leader is often offering the technology in a tightly

integrated fashion and best delivers to consumer needs in this space where the solu

tions typically are not yet good enough. This is the time when tight integration, not

standards-based components, is the path to success. Standards develop once the

marketplace reaches a point where the market leader begins to overdeliver. These are

the circumstances in which a market-dominant de facto technology is at a critical

point and the call for de jure standardization is possible.

The signal to standardize a technology is somewhat unclear, but there is likely a col

lection of factors:

Competitors with standards experience and similar product offering networks

but different core drivers likely use the opportunity to "call for standards,"
13

hoping to reduce their own complement costs while causing a competitor grief

in a core revenue stream.

Customers managing substantial procurement budgets will support and call for

standards in the hopes of prolonging investments and attempting to reduce costs

from vendors that are overdelivering. For example, the U.S. government as the

largest IT buyer on the planet at the time, led the charge around the POSIX and

C-language standards, quickly followed by the large companies in the petroleum
and automotive industries.

If you are the one true implementer, and the market (i.e., partners, customers, and com

petitors) is calling for standardization in your core technology space, you have a prob
lem. They re calling for the benefits of standards (expanding market and price competi

tion) because they want the ability to replace you. Some segment of your customers

wants the choice of multiple implementations. Your competitors are happy to support
the call, as this is the thin edge of the wedge to break open your value proposition to

your customer, all in the name of open systems. Your partners may be happy to support
the call for standardization because they want price pressure as their margins diminish

and perhaps your percentage of their Cost-of-Goods-Sold is increasing.

13 Geoff Moore argues that the first response in the market from competitors when they see a

"gorilla" forming is to cry for
"open systems" (Geoffrey Moore, Living on the Fault Line [New

York: HarperBusiness 2002], 119). This might be more of a cause for standardization too early
with all the attendant problems that ensue as has been observed by James Gosling of Sun

Microsystems (James Gosling, "Phase Relationships in the Standardization Process", circa

1990). Goslings observations are more closely in line with Christensen s, arguing that there is

an optimal time in a technology s development for standardization. Some of us have always
suspected that it is best to standardize existing practice and experience, instead of trying to

standardize ahead of the market curve. Indeed, it would be interesting to do a survey of

successful and unsuccessful standardization efforts to determine whether the unsuccessful
efforts were undertaken too early in a marketplace, when vendors are still trying to define the

marketplace itself and stake out claims with products and patents. First, of course, one would
need to define the measure of a successful standard. Christensen s observations are likely more
in line with standards forming at the optimal market time.

Open Standards Complements ** 133

It is important to note that one needs to get the view of the market
"right"

for this

sort of discussion, and hindsight is always 20/20. It is not necessarily the dominant

vendor s product that is to be standardized, but the product market space. For exam

ple, one can argue that the POSIX standards (and the C-language standards, for that

matter) were not about standardizing Unix systems, but rather, were an effort to

standardize an OS interface for minicomputers. Digital Equipment Corp. was the

dominant player in minicomputers (which became departmental servers and work

stations). DEC was driving customers up the hardware upgrade cycle to support its

market growth faster than customers were willing or able to absorb the change. Unix

systems of the early and mid-1980s represented the best opportunity around which

the market could form a minicomputer application programming standard to sup

port customers applications portability. While the Unix systems of the day were

often less scalable, less robust, and less secure than VAX/VMS systems, the Unix

operating system had been ported to most vendors hardware (including DEC

VAXen), so competing vendors could see the market opportunity.

At the same time, the PC arrived on the scene. Many have argued that the PC won

against Unix systems by taking over the desktop, largely due to the inability of the Unix

vendors to set a desktop "standard" fast enough. The PC certainly took the desktop by

storm, but it was actually competing against nonconsumption. In a Christensen view of

the world, it was put together from inexpensive parts, and when compared to mini

computers it was certainly underperforming, but it became the de facto business appli

ance in a document-centric world, enabling a whole new class of electronic document-

centric applications. (Word processing systems companies vanished almost as fast as

the minicomputer companies.) The PC was competing with nonconsumption, giving

business users computing resources on their desktop instead of being stuck waiting for

their business data processing applications to be developed by corporate IT, with its

ever-growing systems development backlog. The Unix systems (driven by standards

and an
"open systems" message) were data processing-centric rather than document-

centric, and caused DEC grief in a completely different space.

Christensen observed that as an area of technology is standardized, the value moves

to adjacent spaces in the network. 14 The trick then becomes to ensure that one is

building one s business efforts in the product network around the space being stan

dardized. This would lead us to believe that the richer a product offering network a

vendor has, among different software, hardware, and service components and prod

ucts, the more opportunity that vendor has to move with the value or to define new

components that the old components complement.

14 This was originally referred to as "the Law of Conservation of Attractive Profits," but is now
referred to as "the Law of Conservation of Modularity."

134 X Under the Hood: Open Source and Open Standards Business Models in Context

This core-complement product network view allows one to very rapidly see how the

vendor politics in a standards working group play out. A vendor with a de facto

product technology that is being dragged by the marketplace into a de jure stan

dards working group is likely a little less than enthusiastic about participating in its

own commoditization. The vendor alliances within the working groups are partici

pants in the complement space. The game is one of technology diplomacy, where the

goal as a vendor representative is to expand your area of economic influence while

defending sovereign territory. This holds true regardless of whether one is participat

ing in a vendor-centric organization such as Ecma International, as an
"expert"

to a

national delegation to the ISO (on behalf of her employer), or as an individual con

tributor to an organization like the IEEE (again, funded by her employer to partici

pate). Vendor consortia offer a similar view. Which vendors formed the consortia

and which vendors quickly and noisily joined shortly afterward says a lot about who

the incumbent in a product space is and who the competitors are.

Conclusion

Businesses are often much more than simply hardware companies or a software com

panies or a service providers, offering breadth of product and service in overall value

proposition to their customers. Successful companies use a collection of strategies to

deliver a "whole product offering"
for their customers, driving their core revenue

generator with a host of complementing products and services.

Standards have traditionally been one tactic or tool for driving additional comple

ment value to a customer by developing a complement space in a maturing market

with a lot of implementations at a reduced price.

Open source software can also be used as a tool to develop a complement space that

supports a core revenue product or service. The open source project can act as a

quick and convenient bucket of technology around which other product offerings are

wrapped, or plugged into an existing product offering network.

A number of models were presented on how to think about customer-centric solu

tion networks and vendor-centric product networks (and for thinking about the

product network from a core-complement point of view), alongside Moore s tradi

tional Technology Adoption Life Cycle and Christensen s models for how product

markets behave. Open source software projects and standardization efforts can be

viewed as tools to be used to attain competitive advantage. A number of large corpo

rations are now participating in OSS communities to the benefit of the corporation

and the communities, just as corporations have historically driven voluntary stan

dards engagements. The model-based view certainly doesn t take away from the

excitement inherent in different OSS projects or the overall economic value of a suc

cessful standard. It merely provides context to businesses that want to understand

how to adopt and participate in either.

Conclusion
**

135

t CHAPTER 9

Russ Nelson

I ve been giving away my software since 1983, full time since 1991. I don t do it for

fun, although I enjoy it. I do it because it s a way for a small business to earn money
and it s fun. Each of my software interests started as a hobby, and some have turned

into a profession. Not every hobby of mine has turned professional, and I hope to

explain why some have and some have not.

Three of my hobby projects, which I ll talk about in depth after I introduce myself,
have turned profitable. They are Freemacs, Packet Drivers, and qmail.

1 Freemacs is an

MS-DOS text editor, styled after Emacs. It s still used today as the official editor of the

FreeDOS project. Packet Drivers hide the difference between Ethernet cards in an MS-
DOS system. If you ve ever eaten at a McDonald s restaurant, your order was communi
cated through Crynwr Packet Drivers. Qmail is a mail transfer agent (MTA) for send

ing and receiving Internet mail. Qmail is the engine behind Rediffmail s 30-million-

user, multiterabyte, 100-node email cluster, and many smaller sites.

Introduction

I did hardware hacking long before college. Digital electronics was too expensive for

me: $1 per TTL quad nand gate at a time when vinyl records cost only $5. So, I fid

dled around with analog electronics. I invented a trigger sweep for my dual-beam

oscilloscope, and an analog computer throttle for my model railroad.

Qmail is an all-lowercase name, and will be capitalized here only at the beginning of a sentence.

^137

My high school was a member of LIRICS: Long Island Regional Instructional Com

puter System, which had a PDF- 10 students could use to leam to program, via tele

types operating over modems. I was at Baldwin Senior High School from 1972 to 1975,

but took advantage of the program only in my last year, from 74 to 75. I learned

BASIC and wrote a four-banger calculator program. I also wrote a word processor in

BASIC, for which I had to do all sorts of horrific string manipulation. It took hours to

format a two-page social studies paper. Partway through I got an Instant Message (IM)

from an operator who asked me what I was running, and if it was looping.

During this period I learned PDP-10 Assembly language. JRST, HRRLZ, and SKIPNE

are all familiar friends to me. Unfortunately, none of my candidate colleges had a

PDP-10. MIT almost certainly did, but I was a poor scholar who was more interested

in getting an education than in proving that I had one. Of course, everything on the

PDP-10 was what we d now call
"open

source." Nobody thought of holding back the

source code in those days.

Many colleges will teach you how to become a businessman. I didn t have that desire

upon entering college, and so I sought a degree in electrical engineering. Only later

did I decide to run my own business, but how to learn? I started slowly, learned

through experience, and didn t take too many risks.

I learned "on the
job,"

and discovered new ways to profit from open source soft

ware. Everyone in the business had to teach themselves. There is no master s degree

of open source business administration not yet anyway.

Hewlett-Packard recognized my "genius"
and hired me and my wife to work in its

calculator division doing integrated circuit design. I missed programming, so I

bought a RadioShack Color Computer (CoCo). This led to my first freelance income

associated with programming.

I wrote programs for fun and sold them to CoCo Magazine for distribution. They were

just little cute things, but they were in Assembly language, so they were fast, small,

and easy to distribute. The standard distribution was on audio cassette through a

paid subscription. It was nice to receive money for writing a program for fun. With

out a local user community, it was also the only way I could distribute my software.

Freemacs and Open Source

After I returned to graduate school, I started writing a programmable editor for MS-

DOS. Instead of writing it de novo, I thought it should be compatible with Emacs. I

had used Emacs while working at Hewlett-Packard, where I had done some hack

ing on an editor. That experience convinced me I wanted an editor without any dis

tinction between editing and typing. I purchased a copy of the MIT AI Lab memo

describing Emacs, written by Richard M. Stallman (RMS). I recognized his name

because of his GNU Manifesto, a new document then. I sent email to RMS to get

138 K * Open Source and the Small Entrepreneur

permission to sell a copy of the memo along with my editor. The document was in

the public domain, but I thought that asking permission was only polite.

I got a call from RMS (this was back when his wrists hurt so badly that he couldn t

type). He persuaded me to give away my version of Emacs rather than sell it. He

appealed to my sense of fairness. He asked why I should profit from a manual that I

had not written. I was impressed that so stellar a personage as RMS would take the

time to call me. I decided that it would be best to give it away. I didn t really have

any idea whom I might sell it to. All my previous software sales had been for the

RadioShack Color Computer, and had been sold to CoCo Magazine. My editor was
for MS-DOS, so this was a completely new situation for me. Once I decided to give it

away, I gave it the catchy name Freemacs.

In graduate school, I had access to worldwide networks, and it was actually possible
to distribute software "for free." Nobody was kidding themselves; the Department of

Defense was paying the bills for the ARPANET, universities for BITNET, and compa
nies for CSNet. Nothing was free to the institution, but the users perceived the net

works to have no incremental cost. This led to allocation by congestion, but I m not

talking about economics yet. Regardless, a software author could give away software

for the mere cost of uploading it to a distribution point.

Freemacs was distributed from SIMTEL-20.ARPA, an FTP site with copies of most useful

MS-DOS software. It was run by the Army at the White Sands Missile Base, but nobody
cared about where it was physically. The point was that they had good stuff, and they
were sharing it. This made me a contributing member of the open source community.

Freemacs and Business

Freemacs was a hobby, and I had no intention to turn it into a business. My comput
ers (even my home computers) were paid for by my employer, so I had no expenses
to cover. As the program gained users, they told other MS-DOS users about it. Those
users wanted updates, and none were available on any of the worldwide networks of

the day. Having no other recourse, they asked me for copies. I knew that they were

gaining from these copies, so I asked for a portion of those benefits in the form of a

copying fee. Between 1985 and 1991, most of the activity of Crynwr Software con
sisted of putting software on floppy disks and mailing it to customers.

Two interesting stories about mailing floppies: one is about a customer in Ireland who
had two floppies go bad on him. Guessing that his email was going through some kind
of antiterrorist scanner (as the Irish Republican Army was quite active at the time), I

sent him a third floppy wrapped in Imm-thick lead foil. That floppy got through OK.
Another is of a customer who, although a part of the defense department, had no Inter

net access, or even have a modem and this was after almost everybody had gotten on
the Internet, so I was surprised that they were even allowed to telephone out, but I sent
them a floppy with software on it and they were happy with that.

Freemacs and Business I
*

139

Staying in Touch

It s crucially important to stay in touch with your users. The biggest advantage
an open source developer has is close contact with users. If you re the primary
user for the software, of course you know what users want you just sit and cog
itate. Quite a bit of open source software is written to "scratch your own itch."

This is easy and rewarding because very little communication is needed. Pro

grammers are not typically great communicators (most programmers fall into one

of the four NT classes on the standard Myers-Briggs personality test). A program
mer who can listen and talk is worth her weight in chips (and chips are worth

more per ounce than gold).

With Freemacs, I started with a single mailing list, which proved to be a mistake:

some people don t need any help and just want to know when new releases come

out; other people want to get or give help but don t want to code; and still other

people are interested in every miniscule detail of the program. One list cannot

serve everyone. I found that I needed three lists.

One list carried only announcements of new releases. You really want to have an

announcements list, and you need to remember to use it. You might send only
one or two pieces of email a year, but those are crucial. First, you need to remind

people that they ve given permission for you to send them email. Second, people
need to know that you re in business even if they don t currently need your busi

ness. Any user might suddenly find himself needing to become a customer. You
need to be the proprietor of the relationship between the software and the user,

as you ll use that relationship to make money.

A second list was for user-level help. Some programs are exceptionally powerful

(I m not thinking of the Unix "cat" or "tail" here, but something more like send-

mail or qmail) and in-depth knowledge to properly exploit all that power. Some
users want to acquire that depth. Others do not, but will dip their toes into the

depths by asking a question on the user mailing list. If there are sufficient users

of the program, you will have other businesses competing with you. One of the

ways they will compete is by offering to help other people. No need to worry,

though! By virtue of your proprietary interest in the program, you will have a

built-in advantage over these other businesses. In any case, customers like com

petition because they perceive it as ensuring fair prices.

140
*
C Open Source and the Small Entrepreneur

The third list is for developers. 1 am of two minds here. You could have the devel

opers list open to all comers, regardless of their to contribute to the project. Or

you could have the developers list be open only to those who actually have con

tributed. The main tradeoff is protecting the time and attention of your contrib

utors. You don t want them signing off the developer mailing list because it has

too many user-level questions being asked on it. You really need their attention

to help you make decisions that will affect them. For example, if you change an

API, you need to clear that change with your developers first, because it keeps
them involved in the process, and second, because they may be relying on some

thing you re doing.

FreeDOS has adopted Freemacs as its standard text editor, so it still has a user base. I

only rarely do any MS-DOS work, and when I do, I m happy with the state of

Freemacs, so it s now frozen in time. There were never any commercial users, so

apart from selling copies on floppies, Freemacs managed only to buy me my own

computer for home.

Packet Drivers

Crynwr Software came into its own with packet drivers. A packet driver allowed the

sharing of an Ethernet card between two protocol stacks. For about a year, the only

possible way to get Novell network clients on the Internet was by using a packet
driver. Also, a packet driver would hide the differences among Ethernet cards.

Unlike video boards, which are at least compatible at the VGA level, Ethernet boards

have never been compatible.

Back before packet drivers existed, there were network clients and servers largely

Novell NetWare. The manufacturer-written network driver was linked to Novell s

code in a single executable. The resultant program had no API for an external pro

gram to send or receive an Ethernet packet, which was very bad for any competition
to NetWare. Maybe Novell planned it that way, but I doubt the company was that

Machiavellian.

Anybody wanting to send packets other than NetWare s had a problem.

The 3Com 3C501 was the market leader, but it was a very insufficient card. It had one

buffer shared between transmit and receive, so a packet could be lost if it arrived when
the buffer had not been emptied, cleaned, and turned around. However, everybody had

drivers for it. Novell, in an attempt to improve the state of the art, took National s 8390
demo board and put it into production as the NE1000 (and later as the NE2000). This

board had sufficient memory with separate transmit and receive buffers.

Just about then, other Ethernet controllers were coming on the market. People were

using the Intel 82586, the AMD LANCE, and the National 8390 (in non-NE2000-

compatible ways). Only NetWare included a device driver development solution. It

had a driver development kit (DDK), and a certification house (Novell Labs).

Other protocol stack vendors were doing the same thing producing drivers linked

into their own products. No vendor had a driver that could be shared, however.

While Novell and Microsoft pondered, little FTP Software (now owned by NetMan-

age) had the same problem as everyone else: too much hardware and too few driv

ers. It came up with its own specification for a shared Ethernet driver and, unlike

other vendors, published it as an open standard.

I was working for Clarkson University at the time, and we had the same problem as

everyone else: how to support multiple pieces of software and hardware at the same

time. I was using Phil Karn (KA9Q) s NOS, and he had packet driver support. So, I

wrote packet drivers for the two Ethernet adapters in use at Clarkson (the 3c501 and

Racal-Interlan NI5210) and published them as open source software.

A number of fellow Internet users contributed drivers, and before long, we had cov

ered a considerable portion of the industry. This led to more support from TCP/IP

vendors, and a group at Brigham Young University wrote a NetWare driver that

could use a packet driver. We really got the ball rolling then, because anyone with a

NetWare network could put it on the Internet.

There were some holdouts, notably Microsoft and Novell, both of whom started pro

moting their own standards: NDIS and ODI, respectively. The NDIS document was

published from the start, but there were no sample drivers, and no base of code from

which to build. ODI documentation was available only with an expensive DDK pur

chase. A packet driver distinguishes itself by coming with source code, by having a

simple, approachable API, and by being small in size. The typical driver was 5K of

executable, compared to 20K for ODI, and 40K for NDIS.

By the mid- 1991, I realized there was money to be made providing packet driver

programming and certification services the latter for drivers not written by Crynwr.

So I left Clarkson and, after a five-month placeholder stint at a local PBX company, I

started Crynwr Software. Up until 1998, Crynwr s main source of income was from

packet drivers.

Packet Driver Income

Most likely, everybody has heard that the way to profit from open source software is

to sell services. That s true, but there are many different types of services. I ll list

some of them in the following paragraphs.

142 * * Open Source and the Small Entrepreneur

The first, and most profitable, is contract programming. Various people need packet

drivers written, or features added, or bugs fixed. I contract with them to fix it, either

for a fixed price (if I understand the problem), or at an hourly rate (if discovery is

needed). Buyers don t like cost uncertainty they really like to know what some

thing will cost up front but whenever you bid a fixed price, you are taking on the

risk that the project will be much harder than you thought.

I have actually been successful doing what appears, at first sight, to be the worst of

both worlds: charging per hour with a minimum and maximum price. If you set the

minimum and maximum to reasonably sane values, the risk is reasonably shared

between the two parties.

Business Tutorial

Here s a quick tutorial, which I wish I had had when I started, on how people do

business. First, customers expect to do business first, and pay you for it later. The

customer accomplishes this by issuing a private currency called a purchase order

(PO), with a face value and a serial number called the "PO number." Purchase

orders owed to you are Accounts Receivable. Purchase orders you have issued

and will pay are called Accounts Payable. I call a PO a currency because you can

get a loan against good receivables, and you can sell bad receivables (customers

who don t pay, or pay very late) at a discount.

Never do work on a promise to pay you. If someone is really going to pay you,

they ll be able to cut you a PO. People change jobs and companies go into bank

ruptcy. If you have a PO number, that s as good as gold, because a company s

ability to purchase things depends on its reputation for paying on terms. If it loses

that ability, nobody will accept a PO from the company, and then it has to pay
cash for everything. Get that PO!

Some companies have intricate purchasing systems, where you have to be a qual
ified vendor, you have to sign a W-9, and you have to sign a nondisclosure agree
ment just to work with them. Other companies just whip out the credit card, and

you re good to go. For any company larger than 50 people, though, you ll be

dealing with a buyer. Most buyers are used to purchasing software as a product.

Although they are starting to understand that software can be a service, you
might still might run into a confused buyer, because sometimes they re told to

"buy
this software" and they don t understand that they re purchasing a CD and

a support contract. Take the time to educate them about the difference, and you ll

have an easier time working with them.

Packet Driver Income X 143

I ve also sold proprietary packet drivers, although this was a special circumstance

(and one that was very profitable to me). I had a customer who wanted a new packet

driver, but who didn t want to pay the entire price for it. He wanted to pay only half.

He persuaded the vendor (SMC Semiconductors, now SMSC) to pay the other half,

since the packet driver would be useful for all the vendor s customers. That seemed

fair to me. I had his purchase order and SMSC s promise. Unfortunately, he paid up
and SMSC didn t, so I had a packet driver that the vendor hadn t paid for. If I made it

freely copyable, no vendor would ever bother to pay me, so I decided to license it to

SMSC s customers until SMSC paid me. The company never paid, so I sold it with a

clear conscience.

I ve also dual-licensed packet drivers. A vendor that was going to embed an Ethernet

chip into its product and use an embedded processor wanted to freely copy code

from the packet driver without taking a chance that its driver would become a

derived work under the provisions of the GPL. So the vendor purchased a copy of

the code from me, licensed for any use except resale.

I ve also sold compatibility certification. Digital Equipment Corporation had written

its own proprietary packet drivers. DEC wanted me to certify that the company was

compatible with the open source packet drivers. I had written a test program that

would exercise the edges of a packet driver to try to break it. If that program ran, it

meant DEC had made no stupid mistakes reading the specification. I also ran a stress

test for several days; if that didn t run into problems, it meant DEC had made no stu

pid coding mistakes.

I ve also done pure consulting. Contracting is different from consulting. A contractor

is someone who sells his work output, and a consultant is someone who sells his

ideas. A customer wanted me to describe how my packet driver worked on their

hardware, so they sent an engineer to my site for a day to get a debriefing. He took

my family out to lunch, and I got paid handsomely for the day not as much as I

would have been paid to write the improvements myself, but you can t make all the

money all the time.

Qmail

Qmail2 is an MTA written by Daniel J. Bernstein, a University of Chicago professor.

He needed a fast MTA to run his mailing lists. While I was working on Freemacs and

Packet Drivers, I was also running my own mailing lists.

Qmail is not open source. It s freely copyable, but you can t redistribute modified executables.

Although open source MTAs do exist, qmail is close enough to open source that I have

insufficient reason to switch.

144 x x Open Source and the Small Entrepreneur

I experienced the same problems he did, so when he published qmail, I was on it

right away. First, I ran it on a test machine, because I hate to lose email. Later, I ran it

on my email hub after I learned to trust it. Slowly, the qmail community grew.

Working with qmail has been a different experience from Freemacs and Packet Driv

ers, as I did not write the qmail code. It s just as well, since that gives me something
different to write about. It s a truism that you cannot sell something you don t own.

A number of the techniques that I used for Packet Drivers do not work for qmail, as I

don t own the copyright on it. Nonetheless, I have done quite well with qmail.

Open source software serves to promote the author. By writing quality software

(code and documentation), the author shows everyone the quality of his work. The
software pushes his reputation out into the world. But what if you haven t written the

software? I have found the best technique is to spend time reading user forums and

answering questions. You can advance your reputation in this manner.

There are other ways to establish your expertise with a particular program. You can

contribute improvements to the code or documentation. You can write your own
code that enhances the software, but that otherwise stands alone. You can also write

extra documentation or maintain a web site about the software.

I did all these things for qmail. Dr. Bernstein was not interested in registering the

qmail.org domain, so I did it for him and maintained the web site, and I wrote a

POP3 daemon for qmail and gave it back to him. I answered questions on the qmail

mailing list. I wrote add-on packages and patches that people have found useful.

Using all these techniques, I found paying qmail employment. Most often this came
from people who needed qmail installed on their machines and had extra requirements
that needed custom coding. Sometimes the customer wanted on-site qmail training
which I have provided in Stockholm, Mumbai, London, New York City, Oslo, and
Istanbul. All these trips were, of course, paid for by my customers, who also paid me.

Open Source Economics

It was my reputation, or "brand name" if you wish, that got me involved in the Open
Source Initiative (OSI). I had been running the Free Software Business (FSB) mailing
list since 1993, and had some success and reputation. When I heard about the Open
Source name, I immediately adopted it in describing my software. It s so much easier to

explain to customers why they should pay for software when it isn t "Free Software."

Sometime after that, I heard that Eric Raymond was seeking to create an organization
to promote OSI. I had been corresponding with Eric about open source, and we had
discussed it on the FSB mailing list, so I volunteered to be on the board of OSI.

I started the FSB mailing list so I could be more aware: I wanted to know what other

people were doing to make money from open source. It seems that adding value to

Open Source Economics
*
* W5

things others created is a revolutionary way to make money; even Shakespeare might

agree, as he routinely "recycled" plots and storylines written by other people.

Certainly in the software business, an FSB is a new thing. With proprietary software,

about the only way to add value is to sell the software for a higher price, or bundle

products and sell them together for a lower price in toto.

Running an FSB interested me in economics. When you give up a payroll check and

start paying yourself, you also have to pay the business s share of Social Security

taxes and start paying estimated income taxes quarterly. The government imposes

this dead load on businesses. Why do they do this? Who benefits? Who loses? Eco

nomics helps you answer these questions.

Think carefully about how you price your services. There is an economic concept

called
"price

differentiation." It means that you charge different parties different

prices for slightly different services. If you charge a single price to everyone, and that

price is too high, you miss out on helping some people who cannot afford your ser

vices. If you charge a single price that is too low, you create value for some people

beyond the amount they paid. It s not exactly fair that they should gain a lot more

than you. To maximize your gain, sell things to people based on the value they

receive rather than the cost to you. For example, everyone has seen software sold for

less in a third-world country or to a school.

Of course, pricing is also related to costs. Think about both transaction costs and so-

called "sunk costs." Every transaction consumes a small amount of value in the transac

tion itself. The buyer needs to evaluate whether the cost spent is worth the value

received. The seller needs to take the money and provide the value. This cost is not

received as value by either the buyer or the seller; it is simply wasted. One way you can

sell support to a customer is on a self-renewing yearly support subscription. One

month before the subscription expires, you send the customer an invoice. The sub

scription portion avoids having to bill the customer for each support request, and the

self-renewing portion avoids having to ask the customer to renew the support contract.

A sunk cost is one you cannot recover by selling the thing you bought for example

a railroad or a run of fiber optics cable. You can pull up the rails and sell them, but

you won t get back anywhere near the cost of building the railroad. Likewise, spend

ing money to create or improve open source software is a sunk cost. Once you ve

spent that money, you have no way to sell the software (except by exiting the open

source system by using a dual license). Just as a railroad needs to recover its sunk

cost by selling transportation services, you need to recover your investment in the

software by selling related services.

One of the ways to manage costs is by making use of
"public goods."

A public good

is nonrivalrous (meaning that my use doesn t affect your use) and nonexcludable (I

can t stop you from using it). Absent copyright or patent protection, information is a

146 ^ C Open Source and the Small Entrepreneur

public good. Open source is typically copyrighted software, but is licensed under

terms that make it effectively a public good. There is currently great debate over how
much excludability is necessary to produce the optimal amount of software.

Previously, economics students were taught that public goods were always underpro

duced, with lighthouses as the canonical example.

Someone dug up the history of lighthouses, only to find that the early ones were

built by voluntary organizations. In a similar manner, the Free Software Foundation

(FSF) wrote the GNU tool set as a public good. Economists can no longer assume

that public goods are underproduced.

People don t particularly care about products. People only buy things and own things

for the services those things render to them. People don t want to own a washing

machine; they just want clean clothes. Any desire to own a washing machine is second

ary to having the clean clothes. The same thing goes for computers, only computers can

provide many different services. The same services that someone can get from a soft

ware product can also come from open source software and a support contract.

Economists have discovered many principles helpful to the proprietor of an open
source business. Nevermind the joke about 10 economists having 11 opinions. This

chapter can but touch on the principles. (See the "For Further
Reading" section at the

end of this chapter for more information.)

Where Do We Go from Here?

I ve brought you up to my present life. Well, not quite. I received an inheritance

from my mother, which, when invested in the stock market, generates sufficient

income that I no longer need to work for a living. I still take interesting jobs as they
come up, and I support long-term customers because they ve become friends, not

just customers. In everything else, I just write open source and distribute it as I wish.

My advice to you is to always pay your retirement fund first: put 10% of every

project s check into a brokerage account and invest it in an Exchange Traded Fund.

Happy hacking!

For Further Reading

For a basic (and enjoyable) introduction to price theory, read Hidden Order, by David

D. Friedman (Collins, 1997). In fact, read anything written by any member of the

Friedman dynasty: Milton, Rose, David, or Patri.

For a basic introduction to economics, read Economics in One Lesson, by Henry Hazlitt

(Three Rivers Press, 1998).

Where Do We Go from Here? *C M7

For an explanation of the proper function of the law, read The Law, by Frederic Bas-

tiat (Foundation for Economic Education, 1987). It s in the public domain, so you

can find it on the Web, in print, and as a free audio book.

For a very deep exposition on economics, read Human Action, by Ludwig von Mises

(Fox & Wilkes, 1996). It s available at http://www.mises.org/humanaction.asp.

The FSB mailing list is at http://crynwr.com/fsb.html.

Freemacs is at http://www.freedos.org/jhall/freemacs.

Packet Drivers are at http://crynwr.com.

qmail is at http://qmail.org.

148 x x Open Source and the Small Entrepreneur

CHAPTER 10

Wendy Seltzer

Why Open Source Needs

Copyright Politics

Some programmers and businesspeople draw a distinction between "Free Software"

and
"open source." Free Software is political, they say, and open source is pragmatic.

Free Software developers want to recede the world; open sourcers just want to write

good code. This distinction is, of course, exaggerated. Many people adopt these

labels for their own reasons; some switch between them depending on audience or

context. But even the most apolitical of open source developers and users should be
concerned by the copyright battles waged right now. The copyright law being made
and enforced today will impact the software we can develop and use for decades, and
its impact reaches far beyond commercial media.

Imagine, for example, that you d like to build an open source home multimedia
server. Nothing fancy yet, just a place to play music, watch the occasional DVD, and
record television programs one machine to replace the menagerie of devices nest

ing in your media center. Easier developed than cleared legally. Technically, you (or
others willing to share with you) will be able to meet the challenges with Moore s

Law-fast processors, ever-cheaper massive storage capacities, and clever user inter

faces. The legal obstacles are harder to hack. Start with the music. If you have stan

dard CDs, you re all set: plenty of Free programs let you play them from the CD
drive, rip them to Ogg, FLAG, or MP3 (with a nod, perhaps, to the patent licensors at

Fraunhoffer). Try to connect to a streaming service or purchase music online, and

things get tricky. Apple s iTunes, the "new
Napster," and Rhapsody all lack open

source clients, and none would be happy with reverse engineering to write one that

plays the music they sell encrypted or by subscription.

Yet music is the easy part. Want to write a player for DVDs you ve purchased or Net-

flixed? Because only closed source implementations have been licensed to decrypt

the DVD s files, any DVD player you write is liable to be deemed a "circumvention"

by the movie studios and courts, even if the only features you write match those of

WinDVD or the standalone player under the TV. Television, then; recording over-

the-air broadcasts shouldn t be too hard, since those are unencrypted. Watch out for

the digital television transition and the broadcast flag, though. Unless public interest

groups challenge succeeds, the FCC s broadcast flag rule will ban open digital TV

tuners that can be used with open source software. The only ones who will be able to

play will be those making closed hardware or proprietary software decoders. You ll

encounter these obstacles before you even try to take any of your media off the server

to exchange with friends or family.

OK, but say for a moment that you have no interest in multimedia. Leave that mine

field for another day and move on to business networks or productivity software.

Even there, copyright law intrudes. Your security analysis of a system s encryption

might be limited by what media companies have preemptively claimed as "techno

logical protection measures;" your selection of replacement parts or add-on modules

could be dictated by copyright-based tying more than fitness for use; your ability to

interoperate depends on whether reasonable interpretations of the law prevail over

some vendors extreme copyright claims.

Like a group of once-healthy cells grown out of control, copyright law has metasta-

sized to threaten the system of creativity it was once helping to support. No longer a

"limited monopoly" to encourage creativity and dissemination of creative works to

the public, copyright has become a blunt tool of exclusion, chilling development of

software, among other creative endeavors. And so the fight to restore balance to

copyright law cannot be dismissed as mere politics. Unless users and developers of

open source software join the copyfight, they will find the new reality of copyright

law restricting not just their freedom to play blockbuster movies, but also their core

freedoms to write and run independent and interoperable software.

From Movable Type to MovableType

A balanced copyright law is enshrined in the U.S. Constitution: "to promote the

progress of science and useful arts," Congress was empowered to grant authors

exclusive rights "for limited times." The monopoly created was limited in time and

scope. The first copyright law gave authors a 14-year term, renewable once, to pub

lish and vend maps, charts, and books. Copyright protected original expression for a

short time, while leaving others free to build around that expression (translations and

dramatizations, for example), and then to recycle works entirely from the public

domain once copyright expired.

ISO ^ C Why Open Source Needs Copyright Politics

Copyright law has changed with the introduction of new technologies. New means of

reproduction often first challenge the copyright framework, then establish them

selves as new creative tools for authors and their public audiences alike. At the turn

of the last century, printers bought single copies of sheet music and punched holes

into rolled paper to program "piano
rolls" for then-new player pianos. Composers

and music publishers sued, seeking to rein in this appropriation. When the courts

held that punched paper didn t
"copy"

inked notes, Congress updated the law with a

compromise not to ban player pianos or mechanical reproduction, but to permit

anyone to produce piano rolls if they paid a "mechanical license" royalty for every

roll sold. As the player piano market grew, more music reached more people, and

more composers got paid for creating it.

The pattern has repeated itself many times since. Songwriters and performers

denounced radio until both found that it could promote sales. Movie studios deplored

the videocassette recorder, saying Sony s Betamax would be the "Boston
Strangler"

to

their industry. When they failed to shut Sony down, however, the industry converted

its peril into a profit center, finding that viewers with home recorders were potential

customers for rentals and sales of appropriately priced videotapes. Meanwhile, the

Supreme Court s ruling that technology makers would not be liable for users copy

right infringements so long as their devices were
"capable

of substantial noninfringing

use" fueled a technology boom. The public and the creators shared the benefits of new

technology the public could record movies from television to videotape; studios

could sell or rent videocassettes more easily than reel-to-reel.

Despite making it through these earlier transitions, the entertainment companies
haven t stopped fighting technological change and the competitive threats it repre

sents. The MP3 player is a slightly more convenient cassette deck, and the weblog is

just the next step forward from the typewriter and mimeograph. This time, however,

the entertainment industry has swayed many in Congress and the courts to the view

that
"digital

is different," and induced them to change the law in ways that are differ

ent and dangerous.

This expansion of copyright s control interferes with open source development. The

changes manifest themselves in layers, most notably overassertion of protection for

code itself; excessive protection of other copyrighted content that code is dealing with;

and misuse of copyright to control markets and maintain cartels in technologies of dis

tribution or manipulation of code and content. Together, the copyright layers build a

shell around not only proprietary code, but also around culture and innovation.

Copyright in Code

Copyright protects original expression in code, as it protects any other
"original

works of authorship fixed in any tangible medium of expression." Some developers
use that protection to enforce the openness of their code, as with the GNU General

Copyright in Code X 151

Public License (GPL); others use it to reinforce a proprietary distribution model. But

while copyright protects code s creative expression, it does not protect the functions,

methods, or procedures that expression implements. Thus, even for closed code, a

programmer remains free to study interfaces and functionality, free to interoperate or

replace that code with his own.

Situated as it is in an environment filled with proprietary software and poorly docu

mented interfaces, open source development frequently relies on reverse engineering

to fit in. Anyone who has used Samba to bridge Windows and non-Windows net

works has benefited from Andrew Tridgell s reverse engineering of the Windows pro

tocols for network services; anyone who exchanges files to read and write them in

OpenOffice.org rather than Microsoft Word appreciates the reverse-engineering-

derived ability to edit files in Microsoft Word format.

Courts have long held that reverse engineering, the practice of examining something

and taking it apart to figure out how it works, is a fair use, not an infringement of

copyright. Even when programs are released only as closed, binary code, program

mers can often discover a great deal about them by watching their operation or the

file formats they use, or by disassembly. Reimplementing those discoveries in new

code comports with copyright too. So, companies have been protected in taking

apart a video game console to build a console emulator (Sony v. Connectix) or disas

sembling a game to build a new one compatible with the console (Sega v. Accolade). If

someone builds a better mousetrap after examining those that exist, copyright law

will not stop her from deploying it.

At least that s the black-letter law. In practice, though, many copyright holders try to

extend copyright s limited monopoly to block reverse engineering, through a combi

nation of copyright, contract, and anticircumvention. For example, Blizzard, maker

of the popular Starcraft and Warcraft video games, claims that all players have

"agreed," through click-wrap licenses they encounter before the programs run, to a

contract that prohibits reverse engineering the Blizzard games. This contract plus

copyright, Blizzard asserts, prevents anyone from interoperating without permission.

The bnetd project began when a group of programmers became frustrated by the

poor performance of Blizzard s battle.net server for multiuser play of the games they

had bought. Instead of putting up with the frequent downtime and rampant cheat

ing on Blizzard s server, they started work on their own open source game server. By

watching the communications between game and server, the bnetd programmers

were able to reverse engineer their own compatible server, which they set up to give

owners of Blizzard games an alternate place to meet, and made the source available

for others to join the effort. The public got another option for playing Starcraft, and

another reason to buy Blizzard games.

Blizzard rewarded the bnetd team s creativity with a lawsuit claiming, among other

things, copyright infringement and breach of the click-wrap contract. The team had

152
*
C Why Open Source Needs Copyright Politics

not seen any of Blizzard s source code, much less copied it, as they reimplemented

uncopyrightable functionality, but that didn t stop Blizzard from pulling out the

copyright sword. Copyright s lack of protection for functionality is deliberate and

sound innovation policy the public benefits from being able to choose among com

peting implementations of functionality, be they game servers or network services

yet Blizzard follows in the steps of many trying to get around copyright s limits with

contract claims.

Blizzard was trying to limit the code others could produce, to extend the copyright

protection on its own code. But many of those pulling out copyright s swords aren t

trying to protect code, but other copyrighted content touched by or that they re

afraid will be touched by code. These efforts, assertions of secondary liability, anti-

circumvention regimes, and attempts to impose technology mandates, all limit open
source developers ability to produce new code, to learn from old code, and to com

pete in the market with proprietary code.

Secondary Liability

Copyright law has not been strictly limited to the direct infringers, but may be

extended to those who "contribute" to the infringement in an ongoing relationship

with the infringer, or with special-purpose equipment suited only for infringement.

Thus, the proprietor of a hall, who looks the other way while paying guests listen to

unlicensed music, can be held vicariously liable for the infringing public perfor

mance, and the seller of tapes of a length precisely timed for copying particular copy

righted albums could be held contributorily liable for the subsequent infringing use.

Extended too far, however, secondary liability chokes off innovation.

Twenty years ago, the Supreme Court rejected Universal and Disney s
"unprece

dented attempt to impose copyright liability upon the distributors of copying equip
ment" with the ruling that manufacturers of devices

"capable of substantial non-

infringing use" could not be held secondarily liable. The MGM v. Grokstcr lawsuit, an

attack by all the major record labels and movie studios against Grokster and Stream-

cast, maker of the Morpheus filesharing software, is nothing short of an all-out

assault on the Sony standard.

The studios argue that Grokster and Streamcast should be liable because many users

of the peer-to-peer software infringe copyrights notwithstanding that many others

transfer public domain works from Project Gutenberg or the Internet Archive; freely

licensed works including open source software and Creative Commons-licensed

media; or government works. They argue that the producers of software should be

held liable for its
"predominant" or

"principal"
use. Their standard is unworkable

both to an entrepreneur financing an untested product and to an open source devel

oper releasing software, any of whose users could adapt it to an unintended, infring

ing purpose.

Secondary Liability *C 153

Under the Betamax standard, makers of multiuse devices such as the VCR could thus

offer them to the public without fearing that they might be held liable if customers

misused them to infringe copyrights. With this assurance, hardware makers built

components with open interfaces, including CD and DVD burners and massive hard

drives, without fearing that someone might put the Plextor on the copyright hook by

using that CD burner for large-scale copyright infringement. They built copying

devices to transfer content. Software makers, too, have safely offered highly config

urable and open source software with relative confidence that their users configura

tions won t land them in hot water. The studios proposed redefinition threatens that

freedom to innovate.

Grokster is thus much bigger than peer-to-peer. An expansion of copyright liability,

with a "predominant use" test, would make it safer to produce limited-purpose, non-

user-modifiable devices and software than open hardware and open source software,

regardless of the intent of the developer.

If secondary liability for those who "contribute" to infringement in some ill-defined

way weren t enough, the entertainment industry is likely to return to Congress with

pleas of renewed urgency to pass the INDUCE Act, which stalled last term. That pro

posed bill would add yet another level of indirect liability: "inducing" infringement of

copyright would extend beyond those who made the tools, to those who explained

how to make them work. Watch out that your documentation isn t too thorough!

Anticircumvention

The next stage of copyright expansion beyond direct infringement is the anticircum-

vention and antitools provisions of the Digital Millenium Copyright Act (DMCA). In

the real world, these provisions do little to stop hard-core piracy, but they present a

serious barrier to open source compatibility.

Section 1201 of the DMCA prohibits "circumvention" of technological protection

measures controlling access to copyrighted works, and it bans manufacture, distribu

tion, and trafficking in devices, products, components, or services that are promoted

for, primarily useful for, or designed for circumvention of technological protection

measures. Now, a copyright holder who employs a technological lock, such as sim

ple encryption of content, gains the ability to control who and what programs or

devices can unlock it, as part of the new right to control "access" to a protected work.

This is an important functional change from the world of printed books or even CDs,

where anyone who purchased or borrowed the physical item had the right to use it

as she chose read the last chapter first or play the CD in the car or the computer.

Someone who wants to develop a new shuffle mode for CD playback, or a new rip

per with better compression for transfer to a portable music player, can do so with

out seeking permission from the recording companies. It s the misuse of those

154
*
x Why Open Source Needs Copyright Politics

tools say, to copy CDs and sell the copies without authorization, that can be pur

sued as an infringement of traditional copyright.

Under the new anticircumvention regime, however, those who control copyrights

can take their control much further. Thus, copyright holders say, and courts have

agreed, anyone who develops a decoder for an encrypted format without a license is

producing circumvention tools in violation of the DMCA. So, groups of copyright

holders, who couldn t individually control markets, join together in licensing cartels

backed by the magic of the DMCA, by which they control not only copyrights but

also the surrounding player technologies.

And so it is with digital video discs. Movie studios and consumer electronics and

technology companies developed the content scrambling system, a.k.a. CSS, applied

it to DVDs, and declared it to be a technological protection measure. By forming the

DVD Copy Control Association to license the CSS specification as a trade secret on

restrictive terms, they sealed themselves a nice cartel, simultaneously protecting

themselves against disruptive innovation in video players from outside of the estab

lishment and walling off their copyrighted works against fair use copying.

The CSS encryption was trivially easy to break, once Jon Johansen and some Ger

man programmers set their minds to it. But that s beside the point, since the law pro
tects even weak technological protection measures with the full panoply of anticir

cumvention and antidevice prohibitions. Even weak measures set up the law s sharp
division between licensed access and unlicensed circumvention. Thus, with DeCSS
and its successor code, anyone can play or rip a DVD on any platform, but with

DMCA, no one can lawfully do so in the United States, or even develop code for

DVD playback, without a license from the DVD-CCA.

Kaleidescape is a small company with a rich clientele owners of hundreds of DVDs

willing to pay nearly $30,000 for a DVD jukebox to organize and store them all.

Kaleidescape built this machine a computer filled with massive hard drives onto

which customers could rip their DVD movie collections. For its efforts to help the

movie industry s best customers get more out of their purchases, Kaleidescape earned

itself a lawsuit from the DVD-CCA, claiming Kaleidescape had breached its contract

licensing the not-so-secret DVD trade secrets.

Kaleidescape s system, which allows the creation of persistent digital copies of the

content of DVDs and allows copying of the CSS copy protection data, is not designed
in a manner and does not include features clearly designed to effectively frustrate

efforts to defeat the copy protection functions.... For these reasons, Kaleidescape has

breached the CSS license.

Without that license, even if similar information could be derived from reverse engi

neering and publicly available information, using it to enable DVD "access" and play
back would be labeled circumvention.

Anticircumvention X 155

As the movie studios have done with DVDs, record labels and software companies
have done with multiple incompatible formats for streaming and downloadable

music: Windows Media, Janus, Apple s FairPlay. Many of these have succumbed to

reverse engineering of varying degrees of sophistication, from "burn it to CD and

rerip,"
to "run it through a simulated sound-card driver," through cryptanalysis

(much of it from Jon Johansen, again).

Yet, like CSS, none of the music protection measures is licensed on terms that per

mit open source development, nor could they be. Open source is incompatible with

both their stated aim, to prevent "piracy"
of content, and the unstated underlying

goal of technology control. Since the essence of open source is user modification,

users could easily modify in or out any particular features and the first to go would

likely be the restrictions of digital rights management (DRM) and barriers to interop

erability. Even if open source version 1.0 incorporated all the restrictions of propri

etary clients, numerous versions 1.0.1 would likely disable them. Thus, anticircum-

vention regimes lock open source out of mainstream development of entire classes of

applications to interact with these copyright cartels media.

Of course, it s not just open source developers who need reverse engineering. Con

sider RealNetworks attempt to sell music that would play on the popular iPod. Real

could have transcoded downloads into standard MP3, which play on the iPod, but

Real (or its record-label-relations department) wanted to include DRM on the files.

So, it reverse engineered Apple s FairPlay format, in a move Real called Harmony, to

encode Real files for the iPod. Apple fought back with legal and technical threats.

Along with intimations that it might use the DMCA, Apple issued a statement that

said, "We strongly caution Real and their customers that when we update our iPod

software from time to time it is highly likely that Real s Harmony technology will

cease to work with current and future iPods." Real wasn t threatening to infringe

copyrights, but to give customers a way to interchange their iPods for other devices.

Once again, DRM is market protection, not copy protection.

The Threat to Research

Again in the DMCA, copyright bleeds beyond entertainment media and content.

Here, it also chills research into encryption that may be used to secure copyrighted

works, regardless of whether that research touches entertainment content directly.

When the Secure Digital Music Initiative (SDMI) invited programmers to "attack"

security technologies they were promoting to control digital music, Princeton com

puter science professor Ed Felten and his team stepped up to the challenge. They
broke the security and prepared a scientific paper analyzing the weaknesses of digi

tal audio watermarking. By scrutinizing these implementations, they could help the

public, and particularly those considering watermarks to protect their own materi

als, to evaluate the security of watermark technologies.

156
*
C Why Open Source Needs Copyright Politics

But when the Felten paper was accepted for presentation at a computer security con

ference, its authors were threatened with a lawsuit from the Recording Industry Asso

ciation of America (RIAA) and SDMI s technology providers. RIAA and the technol

ogy companies claimed that even the scientific analysis of flaws in security

technology "would subject [the] research team to enforcement actions under the

DMCA and possibly other federal laws." The RIAA suggested that the paper and con

ference presentation fell under the DMCA s antidevice prohibition, which bans offer

ing to the public "any technology, product, service, device, component, or part

thereof," designed or marketed for circumvention or having only limited commer

cially significant other purposes. Facing legal pressure on conference organizers and

researchers, the team withdrew the paper.

While Professor Felten and his team ultimately published a version of the paper,

"Reading Between the Lines: Lessons from the SDMI
Challenge," they were forced to

strip out technical detail. With the vague anticircumvention threat hanging, the

authors felt they had to omit code samples that could be construed as aiding circum

vention even though that code would have helped other researchers and develop
ers to understand the watermarks weaknesses better and to learn from SDMI s errors

in building their own security systems.

The work of the Felten team never infringed copyright. The researchers did not copy
a single piece of music without authorization, nor even produce tools that enabled

others to do so directly. And yet, they were caught up by the DMCA s vagaries

because their paper intended to educate other researchers and developers of secu

rity systems might also have provided "part"
of a tool for circumventing a copy

right control. Will the same hurdles rise before someone who builds a tool to strip

accidental copy protection from fonts he himself has created; security researchers

who find vulnerabilities in network software they analyze; someone describing hard

ware modifications to make the Xbox a more general-purpose device? So far, the

answer has been
"yes"

for Tom Murphy, SNOsoft, and Bunnie Hwang.

For those who are attracted to open source development because of its opportunities
to learn from and share with others, this antiresearch aspect of the DMCA should be

particularly troubling: research is being chilled precisely because it teaches too much,
because its teaching might be misused. Of course, closing systems doesn t stop them
from having security flaws, or even prevent those flaws from being discovered, and it

does block some of the most effective information sharing around better security.
Both the teaching that open source developers depend on to improve their programs
and the teaching of open source code itself are at risk.

Further, the DMCA has been used in attempts to block competitive interoperability
of devices including printer toner cartridges and remote control garage door open
ers, as manufacturers add little scraps of code to devices and hope to leverage its

The Threat to Research *&gt; 157

"protection"
into market control. Though those arguments have been rejected so far,

it s unlikely we ve seen the last of them.

Technology Mandates

The final layer of copyright s expansion, so far, is to technology mandates, where an

entire technology is redesigned by government fiat in the name of copyright protec

tion. Senator Ernest "Fritz" Rollings proposed one of these in 2002 that would have

required every "digital
media device," including the personal computer, to be rede

signed to protect copyrighted content. While the "Fritz
chip"

never came to be, a

smaller version has been foisted upon us in the form of the Broadcast Flag, an FCC
rule set to take effect July 1, 2005.

With the government eager to get broadcasters off the valuable analog spectrum and

onto digital transmissions, movies studios threatened that they wouldn t allow their

content to be broadcast digitally in the clear, and warned that there would be no transi

tion without their
"high-value"

content. The FCC didn t want to abandon the notion of

unencrypted over-the-air television broadcasts, but it did want to give the studios their

"protection,"
so it put the restrictions into the hardware. At the studios recommenda

tion, the FCC adopted a rule that adds a
"flag"

to these unencrypted broadcasts and

then requires every receiver to watch for the flag and output flagged content only to

"compliant"
devices or in low resolution. Only devices that can implement DRM in a

manner "robust against user modification" will be deemed compliant.

The Broadcast Flag rule enforces copyright on communications through the devices

that receive them:

We conclude that in order for a flag-based content protection system to be effec

tive, demodulators integrated within, or produced for use in, DTV reception

devices ("Demodulator Products") must recognize and give effect to the ATSC

flag pursuant to the compliance and robustness rules. . ..This necessarily includes

PC and IT products that are used for off-air DTV reception.

Instead of focusing on infringing uses of TV broadcasts (taping a show and selling

copies, for example), this new kind of regulation puts the government in the busi

ness of redesigning products that might be used to infringe. In the process, it locks

out many noninfringing uses, innovative technologies, competitive products, and

open source developers. Building a device for time-shifting, pausing live TV,

remotely scheduling recordings, and watching shows at double speed doesn t

infringe copyright, but because the hardware/software to enable those capabilities

isn t "robust," it is sacrificed to illusory copyright protection. Because these collateral

harms are unavoidable, technology mandates should be a last resort, not a predictive

strike against hypothetical danger.

158 ^ C Why Open Source Needs Copyright Politics

The result of this rule is restriction on open source even greater than encryption
would have been. Open source can implement encryption, but it can t offer

"robust [ness] against user modification." Pre-flag, you could get an HDTV tuner card

for a PC, pair it with open source software such as MythTV, and build your own dig

ital video recorder to compete with TiVo. Post-flag, TiVo must use government-

approved "robust" technologies to lock down its hardware and software, and open
source will be shut out from access to the high-definition signals entirely.

Under the Broadcast Flag regime, market participants, bound up in the welter of

licensing and preapproval requirements, can t offer the products users want. Where
the market fails to provide fair-use-enabling technologies, the robustness rules pre
vent end users from correcting the problem. Absent technology mandates, users dis

satisfied with commercial options can and do write their own software alternatives

and often share them in open source. In a world of restricted, robust hardware, users

are limited to the options the commercial market provides: the fully capable hard

ware HD tuner card can t be manufactured. Consumer-driven innovation is cut off

when users can t tinker with existing technologies or develop new ones that chal

lenge market leaders.

What About That Media Server?

Copyright in its historical form benefits open source developers. Along with the gen
eral public, they benefit from the incentive to creativity and the support copyright

gives to open source distribution models. Copyright as special-interest law, however,
hurts open source development, because the special interests are those of closed mar
kets and closed content. DRM can t stop piracy, but it can prevent anyone from

Betamaxing another industry, commercializing disruptive technology development
without content-industry sanction. Where the entertainment industry can t stop

infringement, it attacks openness instead, and the "honest
person" loses.

Whether you want to build a media server or an embedded network device, you ll

likely run across the snares of copyright law. It s time to peel back the layers of copy
right protectionism and return copyright to its original purpose: "to promote the

progress of science and useful arts."

What About That Media Server?
*
* 159

XX
CHAPTER 11

Jesus M. Gonzalez-Barahona

Gregorio Robles

Libre Software in Europe

The libre (free, open source) software 1
community is probably one of the more global

and internationalized. Therefore, it may be a little artificial to try to separate the Euro

pean share of it in the hope of finding peculiar characteristics. But at the same time,

Europe is so diverse, so full of national, cultural, and linguistic boundaries, that it may
be difficult to find common patterns in this already diverse libre software world. How
ever, our feeling is that in between these two facts, there is plenty of room for writing
about what is happening in the European libre software scene. While preparing the

material for this chapter, we have come to the idea that, in fact, this is not such a glo
bal world, nor does its European fraction lack common patterns despite its diversity.

With this focus in mind, we have looked for both the peculiarities and the commonali
ties. We have walked through the enormous amount of data concerning what is hap
pening in the vibrant European libre software scene with the aim of offering the reader

the more relevant and revealing trends and facts, providing a vision of a complex and

diverse, but also uniform, landscape. And, for sure, a very personal one.

In this chapter, we will use the term libre software to refer both to/ree software (according to the
Free Software Foundation definition) and open source software (according to the Open Source
Initiative), except where making distinctions makes sense. Libre is a term well understood in
romance languages, such as Spanish, French, Portuguese, and Italian, and is understandable for

speakers of many others. It lacks the ambiguity of "free" in English ("libre" means only "free" as
in "free

speech") and is used by some people especially in Europe (although the term is rooted
in the early U.S. free software community; see

http://stnetgy.org/jgb/articu/os/Itbre-so/tware-origtn/

ltbre-so/tware-origin.htm/ for details). In this respect, it is important to notice that although the

communities, the motivations, and the rationales behind "free" and
"open source" are different,

the software to which they refer is basically (although not exactly) the same.

X 161

In fact, although libre software can be considered to come from the U.S., the spread of

the Internet (and before that, the Usenet) in Europe made it possible to develop a frag

mented European libre software community as early as the late 1980s. With time, com

mon trends that could be called
"European"

seem to be emerging from this framenta-

tion. However, even without strong pan-European relationships, and maybe due to the

common sociocultural background, some trends are found now and again in different

parts of the continent, producing a collage with many common patterns.

In this chapter, we provide some snapshots of that collage. Instead of focusing only

on issues that can be truly called European (because they involve participants from

many areas of the continent), we have tried to show the diversity of initiatives and

environments, so the reader can have at least an idea of the details of a very complex

landscape. We have also devoted some efforts to identifying common patterns and

Europe-wide initiatives, especially when we find they are a signal of an emerging

common trend. Intentionally, many examples which are European by nature or

birth, but have evolved into global projects, are not included, or are mentioned

briefly, since they are now more global than European and therefore make little sense

here. There is, however, a clear intent to show the main European contributions to

the libre software world, in terms of development, use, and promotion.

All in all, the set of case examples, and the issues presented on these pages, are just a

(hopefully representative) showcase of what is happening in the European world of

libre software, obviously filtered by our personal biases and backgrounds. For sure,

the selection by any other observer of libre software in Europe would be different.

We just hope that the reader will find our selection illustrative enough.

Brief Summary of an Already Long History

Before showing the current landscape of libre software in Europe, it seems necessary

to provide some historical background. From issues like the European involvement

and impetus in projects such as Linux (the kernel) or the KDE project, which influ

enced greatly the shape of the currently available libre software, to very specific use

cases in European companies, which are mainly a consequence of the global impor

tance of the phenomenon, there is a whole rainbow of milestones which will contrib

ute to the understanding of the present situation.

The evolution of libre software in Europe during the early days was parallel (as it

was in other parts of the world) to the penetration of the Internet (and before it,

the Usenet). Therefore, it is not strange that areas which had an early and deep

exposure to these Nets such as the Nordic countries, the Netherlands, and the

United Kingdom also had the first cases of involvement in global libre software

activities. However, it is important to also consider some linguistic issues. For

instance, those countries where the English language (which is clearly the lingua

franca in the global libre software community) has more penetration (either as the

mother tongue or the second language) commonly had an earlier involvement in

162 ^ x Libre Software in Europe

libre software. With the passage of time, maybe since the mid-1990s, specific

dynamics started to show strength in other regions, with more or less of a relation

ship to the global evolution. Most European countries (Germany, France, and

Spain are clear examples) have grown their own communities and libre software

fabric in partial isolation, to the point that many initiatives that are very well

known in one country are almost unknown in the others and outside Europe,

despite their valuable contributions. In many cases, the flux of information among
Europeans of different areas is still carried through global (or, for that matter,

American) events and initiatives. Just as a case example, we still find out about rel

evant news in other European countries through the American web news service,

Slashdot, despite being reasonably well linked to the libre software communities in

several European countries.

Considering this situation, the contributions of Europe to the history of libre soft

ware are extensive. We can consider, for example, events such as the birth of many
applications and projects (consider Linux, the kernel, by Linus Torvalds, Finnish;

Python, by Guido van Rossum, Dutch; MySQL, by Michael [Monty] Widenius,

Swedish; PHP, by Rasmus Lerdorf, Danish; KDE, by Matthias Ettrich, German; and

many more); or the foundation and development of some of the first companies with

a business model based on developing or distributing libre software (such as MySQL
AB, Trolltech, or SuSE); some of the first studies and initiatives denoting attention by
public administrations to the libre software phenomenon (such as those by the Euro

pean Commission); and some of the first research projects considering libre software

as a matter of study (such as those performed by the FLOSS project).

Most of those contributions will be mentioned and presented in some detail within

this chapter. Instead of following a timeline approach, we have preferred to group
matters according to the different topics involved, each one in its own section: devel

opers, community, companies, public administrations, legal initiatives, licenses, edu

cation, and research. Of course, this implies a certain degree of artificial delimiter,

since many issues in fact belong to more than one of those sections. But we hope that

what is lost with respect to that precision is gained in readability and comprehen
sion of the situation as a whole.

The Development Community

Since the emergence of libre software as a concept, European developers have con
tributed considerably to its growth. Only recently have we had evidence of how large
this contribution is: the WIDI survey in 200 1,

2 the FLOSS study in 2002,3 and the

2 Gregorio Robles, Hendrik Scheider, Ingo Tretkowski, and Niels Weber, "Who Is Doing It?";

http://widi.beriios.de/paper/study.htm!.
3 Rishab Aiyer Ghosh, Ruediger Glott, Bernhard Krieger, and Gregorio Robles, "FLOSS Final

Report, Survey of
Developers"; http://www.in/onomics.ni/FLOSS/report/index.htm.

The Development Community X 163

FLOSS-US study in 20034 showed that large numbers of developers declare them

selves as nationals of a European country. In the case of FLOSS-US, from a sample of

almost 1,500 developers, more than 900 (or about 60%) declared themselves to be

living in Europe (including Russia), compared with about 405 in North America. In

the FLOSS study, more than 70% of the developers were living in Europe (14% in

North America). WIDI reported developers were 54% European and about 35%
North American. Of course, all these studies could be biased (and at least they are

with respect to language, since they all were done in English), since the respondents
were self-selected in nature and the studies were not focused on geographic charac

terization, which was more like a side product of other characterizations. But they
were conclusive about the European contribution to libre software development

being quite high and, as an aggregate, incomparable to any other region worldwide.

It is also interesting to notice the distribution of libre software developers within

Europe, since not all countries are equally represented. In this respect, results from

studies are variable, although some common patterns can be inferred. For instance,

France and Germany seem to be the countries with a greater population of develop
ers in absolute numbers, closely followed by the United Kingdom and Italy. Accord

ing to the FLOSS study, France has the highest, with 15% of the total of respon

dents, followed by Germany (12%), Italy (8%), the UK, the Netherlands, and Spain

(all at about 6.5%), and according to the FLOSS-US study the first country is Ger

many (25%), followed by the UK, France, and Russia (all close to 4%), Spain, the

Netherlands, and Italy (about 3% each). WIDI results give 20% for Germany, close to

5% for France and the UK, and about 3% for the Netherlands.

These absolute figures are hardly surprising, since they match (with some excep

tions) the countries with a greater population and GDP (which in general shows a

certain correlation with the number of developers all around the world). But some

countries are clearly overrepresented. Among them, the Netherlands is a clear case.

Sweden, Spain, Poland, Switzerland, Finland, the Czech Republic, Denmark, and

Austria also seem to have more developers than their population or GDP would sug

gest. In fact, the Czech Republic and Austria are two relatively small countries that

have some of the highest figures for libre software developers per capita.

A much more specific case study is the Debian project, where developers have the

option of indicating their residence. Of those who registered, the figures are in line

with the previously described results. Seven of the top eleven countries in November

2004 were European: Germany (151), the United Kingdom (80), France (57), Spain

(37), Italy (34), the Netherlands (30), and Sweden (28). The total number of Euro

pean developers is well over 400, which compares to 364 in North America (U.S.

and Canada), the second-highest region in this survey.

4 "Paul A. David, Andrew Waterman, and Seema Arora, "FLOSS-US The Free/Libre/Open Source

Software Survey for 2003"; http://www.stanford.edu/group/floss-us/.

164 * H Libre Software in Europe

In summary, Europe clearly has a high concentration of developers, possibly higher

than any other region in the world. Within Europe, the Western countries have

higher concentrations (though the Eastern countries of the Czech Republic and, to

some extent, Poland, buck this trend). An area extending from the UK to Italy seems

to include most of the European developers (with countries such as France, the

Benelux, Germany, Austria, Switzerland, and the Czech Republic). The Nordic coun

tries also have high concentrations (with respect to population). In Southern Europe,

Spain seems to be the country with the most developers.

Although some successful libre software projects could be considered European by

origin, or (in some rare cases) because almost all developers are European, this iden

tification is tricky: libre software projects are global by nature (any developer from

any part of the world can, in principle, join in). Therefore, we will not try to identify

strictly European projects.

On the contrary, infrastructure to host libre software projects can easily be assigned a

nationality (although usually it is open to the world). In this respect, Europe is well

behind the U.S., since SourceForge and other well-known hosting sites are physically

located there. But some hosting facilities do also exist in Europe, usually focused on a

given national or linguistic community. As an example, we can cite BerlioOS
,
the larg

est one (http://berlios.de; in Germany, with more than 2,400 projects and almost 12,000

developers registered), Software-libre.org (http://software-libre.org; Spain, 66 projects

and 234 developers), and Gna! (http://gna.org; France, 360 projects and almost 2,000

developers). All of these figures (checked during March 2005) turn pale in comparison
to SourceForge. This is one of several cases where, despite the importance of the Euro

pean developer community, its infrastructure is not at the same level.

The Organization of the Community

The libre software community in Europe, despite being healthy and full of life, is also

fragmented, reflecting the cultural, national, and linguistic diversity we have in the

continent, but also lacking the strength and power it could have if it were more coor

dinated. However, more and more links (usually at the personal level) are being
established, and something similar to a really European libre software community
seems to be emerging. Although it is still some distance from speaking as loudly as it

could for instance, behind the European Union institutions, we are seeing more
and more transnational initiatives as with any other community formed around the

Internet, it has its own virtual and real-world meeting points, such as news sites,

conferences, and associations. However, as we will show in the next paragraphs,
most are closely linked to relatively small geographic areas, and can hardly be identi

fied as being "for Europeans."

Many news sites are strongly related to libre software. Maybe the most transnational one
is The Register (http://theregister.co.uk) (probably because it runs in English), which of

The Organization of the Community
*

C 165

course, is the most popular in the UK. Although it carries news on many IT-related sub

jects, libre software receives more than reasonable coverage. Similar things can be said

for Heise Online (http://www.heise.de), but applied to the German-speaking community.
Other sites worth mentioning are Barrapunto (http://barrapunto.com; Spanish), LinuxFr

(http://linuxfr.org; French), Linux.pl (http://Iinux.pl; Polish), gildot (http://gildot.org; Por

tuguese), and Svenska Linuxforeningen and Gnuheter (http://gnuheter.com; Swedish,

both read also by Norwegian and Danish speakers). Some of them are built as Slashdot-

like sites, others are not, but each has its own flavor. Most of them are helping to foster a

sense of community and are even assisting in the foundation or consolidation of more

formal organizations related to libre software. There have been some attempts to estab

lish a "European Slashdot," but without success (for now). Maybe that is simply not pos

sible where there is such cultural and linguistic diversity.

If we consider real-world meeting places, we can find some that come close to being

truly European. Probably the clearer examples are FOSDEM5 (Free Open Source

Developers Meeting), which is especially oriented to libre software developers and

has for several years been pulling together a good quantity of European hackers (also

attracting some from other regions), LinuxTag,
6 which is more oriented toward users

and companies, although also attractive to developers, and LSM/RMLL7 (Libre Soft

ware Meeting/Rencontres Mondiales du Logiciel Libre), for developers specifically

devoted to libre software. Several projects also have European meetings: GUADEC
(GNOME User and Developer European Conference; http://guadec.orgf),

YAPC::Europe (http://yapceurope.org; for the Perl community), EuroBSDCon (http.7/

eurobsdcon.org), ApacheCon Europe,
8 OOoCOn (http://marketing.openoffice.org/confer-

ence) OpenOffice.org Conference, not specifically European, but always held in

Europe), and many others. These are usually held every year in a different location.

In addition, we have the national events: the aforementioned LinuxTag in Germany,

LSM/RMLL and Solutions Linux (http://sclutionsHnux.fr; a more commercial event) in

France, Linux Forum (http://linuxforum.dk) in Denmark, Congreso Hispalinux (http.7/

congreso.hispalinux.es) in Spain, Linuxwochen (http://Iinuxwochen.at) in Austria, and so

on. In some countries, there are no national events, but smaller meetings are usually

organized by Linux User Groups (LUGs) or libre software associations.

With respect to associations, diversity is also the rule. In addition to more or less local

LUGs (spread through all of Europe), there are some organizations which either repre

sent groups of local associations, or have a wider membership, usually at the national

level. Some of them are: APRIL (Association pour la Promotion et la Recherche en

Informatique Libre; http://april.org) and AFUL (Association Francophone des Utili-

sateurs de Linux et des Logiciels Libres; http://aful.org) in France, NUUG (Norwegian

5 http://fosdem.org, which takes place in Brussels, Belgium, usually in late February.
6 http://linuxtag.org, which takes place in Karlsruhe, Germany, usually in June or July.

7 http://rencontresmondiales.org, which takes place somewhere in France, usually in July.

8 http://apachecon.com/2005/EU for the 2005 edition.

166 *
*

Libre Software in Europe

Unix User Group; http://nuug.no) in Norway, DKUUG (http://www.dkuug.dk) in Den

mark, Atviras kodas Lietuvai (Open Source for Lithuania; http://akl.lt) in Lithuania,

SSLUG (Skane Sjadland Linux User Group; http://sslug.dk) in Sweden and Denmark,

ANSOL (Associagao Nacional para o Software Livre; http://ansol.org) in Portugal,

PLUTO (http://pluto.it) in Italy, AFFS (Association for Free Software; http://affs.org.uk}

in the UK, PLUG (Polish Linux User Group; http://www.Iinux.org.pl) in Poland, and

Hispalinux (http://hispalinux.es) in Spain. At the European level, there is also the FSFE

(Free Software Foundation Europe; http://fsfeurope.org), and the corresponding FSF-

related associations in some countries, such as FSF France (http://fsffrance.org), Verein

zur Forderung Freier Software (http://ffs.or.at) in Austria, and Associazione Software

Libero (http://softwarelibero.it) in Italy.
9 Each of these associations has its own history.

Some of them were formed as Unix associations (now more than 20 years old) and

have evolved into Linux and libre software associations with time. Some others were

formed specifically as LUGS, mostly in the mid-1990s. Still others are devoted to libre

software in general, again mostly founded in the late 1990s. Membership, activities,

involvement of companies, etc., vary a lot from one to another.

On many occasions, there have been discussions suggesting the convenience of a

European umbrella association devoted to libre software, which could speak on

behalf (and be some kind of federation) all of these organizations. But so far, none

has crystallized.

In addition to these
"community" associations, there are also some others represent

ing corporate interests. Among them, probably the most notable is Open Forum

Europe (http://www.openforumeurope.org), which has backed some actions related to

libre software promotion in Brussels, but performs most of its activity in the United

Kingdom. 10

Libre Software in the Private Sector

Since the early 1990s, it became clear to some European entrepreneurs that libre soft

ware was interesting for business. Approximately at the same time in other parts of the

world, companies started to use libre software, and a new market niche for companies

providing services based upon libre software emerged. During the mid- 1990s, many
small companies started to offer services based on the then-new Linux-based operating

system (MandrakeSoft in France and SuSE in Germany are well- known cases that will

be discussed later in more detail, but they were not unique). Some other companies

9 A more complete list (which also includes some organizations that are not associations of the
libre software community, but includes information from almost any country in Europe) is

available at the Open Source Observatory, http://europa.eu.int/idabc/enJdocument/1631/471.
10 Open Forum Europe was widely criticized by libre software advocates when its president signed

a public statement in favor of software patents, in 2003 (see http://swpat.ffii.org/letters/ofeu034
and http://www. kuroShin. org/story/2003/5/6/8355/78133).

Libre Software in the Private Sector *C 167

focused on the libre software infrastructure of the Internet or on specific products

(such as Trolltech AS in Norway and MySQL AB in Sweden). By the late 1990s, inter

est in libre software was strong enough to maintain several mid-size companies devoted

(completely or in part) to generic consultancy, support, and development of libre soft

ware, such as Alcove in France, Andago in Spain, and ID Pro AG in Germany.
11

Later,

starting in the early 2000s, large companies began to show interest in libre software,

especially in the secondary sector (these were intensive users of software, although that

was not their main line of business such as telecommunications, automotive, aero

space, and banking). In 2005, the list of large European companies with a significant

use of libre software is too long to include here.

A good exponent of the interest of European industry in libre software is the ITEA

Report on Open Source Software, 12
published in January 2004, which is aimed at

elucidating the libre software world (from legal and economic, to development and

quality issues), and uncovering business opportunities and issues to be resolved in

relation to it. The following sentences, taken verbatim from the report, may provide

some insight on the opinion of those drafting it (and maybe on the view of the com

panies for which they work):

Depending on the business they are in, companies are likely to have different rea

sons for using OSS. In some cases, OSS can help them lower the cost of the ser

vice, system or product that they offer. In others, their contribution to OSS can

help to establish new standards worldwide. By carefully applying license condi

tions it is certainly possible to derive considerable benefits from OSS, while mini

mizing the risks. Open Source Software is not the
"magic

bullet" to solve Europe s

software development competitiveness. However, OSS is an important new devel

opment and an interesting option for software-intensive systems.

Different sources provide different figures for the market share of libre software in

Europe, but they are consistent in indicating its continuous growth. The market for

libre software in Germany in 2003 was estimated, according to a study by Soreon

Research, 13 to be in the region of EUR 131 million (with a projection of more than

EUR 300 million for 2007). The manufacturing industry was the one with the high

est penetration, with 18% of the companies making significant use of libre software.

The structure of the market was heavily based on support services (EUR 81 million)

and training (EUR 27 million), and direct sales of software accounted for only EUR

1 1 Some of these companies stopped business during the early 2000s. This was the case of ID Pro

AG and Alcove (which still maintains a web site in early 2005, http://alcove.com. Andago, http://

andago.com, is an example of those still remaining in the market.

12 ITEA, http://www.itea-office.org, is a joint effort by many European companies to stimulate

precompetitive research and development, specially in the field of information technologies,

including in its partnership companies like Alcatel, Bosch, Bull, Daimler-Chrysler, Italtel, Nokia,

and Siemens. See http://www.itea-office.org/newsroom/publications/Open_Source_Software.htm.

13 Soreon Research "The Market for Open Source Software in Germany" (July 2003).

168 * * Libre Software in Europe

10 million. However, a year later IDC 14 estimated that USD 98 million would be

spent on IT services for libre software in the whole of Western Europe, and pre

dicted that USD 228 million would be spent by 2008 (for the same region).

To provide an overview of the landscape of European libre software companies, we
have selected a short list of them, probably the better-known ones. This list is, of

course, not exhaustive, but will hopefully be illustrative enough to show the Euro

pean contribution to the world of libre software business models:

SuSE 15 was one of the first companies providing services for Linux-based distri

butions, almost since it was founded in 1992 in Germany, as S.u.S.E., by Hubert

Mantel, Burchard Steinbild, Roland Dyroff, and Thomas Fehr. They started by

selling floppies of Slackware Linux partially translated into German. Later, they
decided to build their own distribution, which was released in 1996 and quickly

becoming the most-used GNU/Linux distribution in Germany. Based on the suc

cess of this distribution, the company grew, with a business model that also

included support, training, and consultancy for libre software. It had a work
force of more than 500 and had one of the more well-known GNU/Linux distri

butions in the world when it was acquired by Novell in 2003, for USD 210 mil

lion. SuSE has also been known for its contributions to the libre software

community, supporting or directly contributing to many projects, from KDE to

ALSA to the Linux kernel itself.

MandrakeSoft (http://mandrakesoft.com) is a French company with major opera
tions in the United States and other countries. It was funded in 1998 by Gael

Duval, Frederic Bastok, and Jacques Le Marois, after the success of the first

release of Mandrakelinux some months before. One of its innovations was to let

people download the entire distribution from the Net, which assisted its spread
around the world. Agreements with the Pearson Technology Group (then Mac-

millan Software) and other distributors helped too and, by 2000, had made it

one of the companies with a larger market share in the libre software segment in

the United States and France, having gone from three to about a hundred

employees in just two years. In 2004, the company had revenues of more than

EUR 5 million. Currently, its business model seems to be mainly linked to its

distribution, although it also provides consultancy and support services for libre

software in general. MandrakeSoft has recently acquired Conectiva, one of the

other companies producing a major GNU/Linux distribution, and has changed
its name to Mandriva (http://www. mandriva.com).

14 IDC, "Services around Linux, Open Source, and Free Software Western European Market
Forecast" (June 2004).

15 SuSE was bought by Novell, but still maintains its original url: http://suse.com.

Libre Software in the Private Sector
*
C 169

Open CASCADE S.A. (http://opencascade.com), now in the AREVA group, is a

French company providing services around the Open CASCADE system (a set of

3D modeling components and libraries) and SALOME (a platform for the inte

gration of numerical simulations), both distributed as libre software. The com

pany is rooted in Matra Datavision, also French, which was a major player in the

CAD/CAM market from the early 1980s to the mid-1990s. One of its lead prod
ucts was CAS.CADE (Computer Aided Software for Computer Aided Design and

Engineering), released in 1993. In 1999, after the decision to change the focus of

the company from products to services, Matra Datavision decided to release

CAS.CADE as libre software, under the name Open CASCADE. One year later,

the company of the same name was segregated and acquired by Principia (in the

AREVA group). Open CASCADE S.A. is now focused on providing customized

development, training, consulting, and other services, with a team of about 80

developers. The company is also fostering the building of communities around

its products, channeled through a specific site (http://opencascade.org).

Trolltech AS (http://trolltech.com) is a Norwegian company well known for pro

ducing Qt, an essential component for KDE and many other systems. It was

founded in 1994 by Haavard Nord and Eirik Chambe-Eng, with the aim of

building cross-platform C++ GUI tools. Now a company with more than 90

employees, it pioneered a dual-licensing model for Qt (and other products). In

the beginning, this software was gratis but not free. However, after the launch of

the GNOME project (promoted by the FSF, among others, and backed by some

companies worried about the dependence of KDE on the proprietary Qt),

Trolltech decided to distribute it under QPL (a libre software license). Finally,

Trolltech moved to the GPL (for the Xll-based version of Qt), and gave those

not willing to comply with the GPL the option of purchasing proprietary

licenses.

MySQL AB (http://mysql.com) is the company that owns the code for the MySQL
database server. It was founded in Sweden in 1995 by David Axmark, Allan Lars-

son, and Michael Widenius (the founders of the MySQL project) and has since

opened offices in many countries. Its business model is based on selling support

and services for MySQL, and selling licenses to those unwilling to fulfill the con

ditions of the GPL (that is, dual licensing MySQL). This is why my SQL AB has

been careful to maintain the ownership of the code, by having all the developers

of MySQL as employees of the company. MySQL AB has run on venture capital

since 2001, had revenues of about EUR 15 million in 2004, and about 160

employees.

To complete the vision of this landscape, let us introduce some examples of large

European companies involved in libre software. The examples were chosen at ran

dom from our experience and therefore are not representative, but again, hopefully

illustrative of what is happening out there:

170 ^ C Libre Software in Europe

ObjectWeb (http://objectweb.org) is a consortium created in 1999 in France by
Bull (http://bull.corn), France Telecom R&D (http://rd.francetelecom.com), and

INRIA (http://inria.com) to develop libre software middleware, ranging from spe

cific software frameworks and protocol implementations (such as CORBA) to

integrated platforms. In 2002, it evolved into an international and independent

nonprofit organization open to companies, institutions, and individuals. The

software developed by ObjectWeb includes more than 40 products in the appli

cation platforms, workflow engines, IDE plug-ins, and software engineering

domains. ObjectWeb uses GPL and LGPL licenses, and has managed to create a

large community of companies providing services around those products.

Based in Spain, Telefonica Investigacion y Desarrollo (TID (http://www.ttd.es) a

subsidiary of Telefonica (http://telefonica.com), one of the largest telecommunication

companies in the world), launched in late 2004 the Morfeo Project (http://mor/eo-

project.org), in collaboration with some other Spanish companies, universities,

and public administrations. Morfeo is a framework for distributing and develop

ing as libre software some products that TID either has produced or needs,

mainly in the field of platform software (middleware, workflow, communica

tions, etc.). It has already released products such as CORBA systems, and is try

ing to build a community of developers. In the long term, this could be a first

step toward a strategy based on libre software for some of the activities of TID.

Ericsson (http://ericsson.com), based in Sweden and not especially well known for

its contributions to libre software, has distributed several products as libre soft

ware. Ericsson s
. implementation of the Erlang programming language

16 was

released in 2000, and has an active developer community. Erlang provides facili

ties for concurrency, distribution, robustness, and soft real-time processing.
Another contribution is TIPC

(http.V/tipc.source/orge.net), a protocol for intraclus-

ter communication implemented as a loadable module for Linux.

Nokia (http://nofeia.com), based in Finland, and also not normally known as a libre

software producer, has distributed some software under NOKOS (the Nokia Open
Source License, an OSI-recognized open source license). But recently another event

related to the use of libre software by Nokia hit the news: the availability of a Python
environment for some of its products (http://www./orum. nofeia.com/python) using the

Symbian OS, in what could be a strategy of letting libre software developers in the

Python community build applications for Nokia devices.

Symbian (http://symbian.com), with headquarters in the UK and owned by Nokia,

Siemens, Ericsson, and others, is releasing one of its products for Symbian OS,
the Open Programming Language (OPL; http://opl-dev.sourceforge.net), as libre

software, using the LGPL. OPL is a BASIC-like language used in Symbian OS
phones for rapid prototype development.

16 Open-source Erlang, http://erlang.org.

Libre Software in the Private Sector ** 171

These examples show how, despite their general strategy of being more or less ori

ented toward proprietary software, many European companies are experimenting

with libre software models and, in some cases, are considering new lines of business

based upon them. In fact, similar cases of exploration of the libre software world can

be found in almost any medium to large-size company heavily involved in the soft

ware business.

Public Administrations and Libre Software

Before the year 2000, libre software was almost completely off the political radar in

Europe. But since then, and with widely varying intensities, it has entered the politi

cal agenda in many European cities, regions, and countries. In some cases, it is con

sidered as one possible choice for public administrations in their role as intensive

users of services based in software. In some others, it is deeply linked to efforts to

promote the information society. In this respect, some public administrations are

actively proposing libre software as a viable alternative for citizens and companies in

their area of influence. Finally, some legislative bodies have also considered law pro

posals which deal specifically with libre software.

Initiatives are happening at all levels: European Union institutions, national govern

ments, regional administrations, and municipalities. However, the situation varies a lot

from country to country and from region to region. All in all, our feeling is that we

have reached a point in Europe where it is strange to find institutions that have not at

least considered the use of libre software. In fact, several studies signal the public sec

tor as one of the driving forces behind libre software in Europe for the coming years. In

the rest of this section, we will take a look at some of these initiatives.

Actions by the European Commission

The European Commission (the institution in the European Union most similar to an

"executive branch") has promoted several actions related to libre software. By 1999 an

informal group of experts, the European Working Group on Libre Software, 17 was

meeting in Brussels at the request of some officials of the DG-INFO (Directorate Gen

eral on Information Society). The main interest of these meetings was to explore spe

cific opportunities for Europe in the field of libre software, to provide the Commission

with some input about its impact in the European IT sector. The most widely known

output of the group was the report titled "Free Software/Open Source: Information

Society Opportunities for Europe?" (http://cu.conecta.it/paper.pdf) which was presented

in Brussels in March 2000. This was probably the first public activity of the Commis

sion in relation to libre software and represented a kind of turning point which led to

many other actions by European institutions. The report identified some signals that

17 Although the group is no longer active, http://eu.conecta.it hosts some information about it.

There is also an open mailing list, freesw, that is still used for announcements and discussions

related to libre software in Europe.

172 X Libre Software in Europe

evolved later into trends. It also recommended both the consideration of libre software

solutions in public administrations, and activities to inform the European industry

about new possibilities. In addition, the report presented a complete landscape of the

libre software world, from technical, legal, and economic points of view.

Since the days of that group, libre software has been present in several actions

funded by the European Commission, which has had a policy of researching and

publishing information about it, without promoting it explicitly. To describe just a

few of those actions, we will concentrate on some initiatives promoted by the IDA

(now IDABC) program and by the 1ST program (in the context of the fifth and sixth

R&D Framework Programs).

IDA (Interchange of Data between Administrations) was a program of the European
Union, started in 1999 and aimed at the funding, development, and coordination of

pan-European services for public administrations. Since 2004, it has been continued

by the IDABC program. IDA and IDABC have performed many activities related to

libre software, which are referred to in the IDA Open Source Observatory (http://

europa.eu.int/idabc/en/chapter/452). Among them, the following can be highlighted:

"European Interoperability Framework for pan-European eGovernment Services"

(http://europa.eu.int/idabc/en/document/3761; 2004). This reference document on

interoperability was written after an extensive consultation process. IDABC con

siders it the highest-ranking module for the implementation of e-government in

Europe. It includes several references to libre software, among which the follow

ing can be highlighted:

Open Source Software (OSS) tends to use and help define open standards

and publicly available specifications. OSS products are, by their nature,

publicly available specifications, and the availability of their source code

promotes open, democratic debate around the specifications, making them

both more robust and interoperable. As such, OSS corresponds to the

objectives of this Framework and should be assessed and considered

favourably alongside proprietary alternatives.

"IDA OSS Migration Guidelines," (http://europa.eu.int/idabc/en/document/

2623#migration; November 2003). One of the best guides for the migration to

libre software. Specially targeted at public administrations, many of its analyses
and recommendations are, however, valuable for any party considering moving
from proprietary to libre solutions. It includes a detailed methodology for esti

mating the convenience of the migration, and for putting it into practice. It also

provides complete descriptions of some typical scenarios, and configurations for

the usual cases (email, desktop, server, etc.).

"Pooling Open Source Software, Feasibility Study," (http://europa.eu.int/idabc/en/

document/2623#feasibility) June 2002. A study on the opportunities for sharing
libre software among public administrations, from technical, legal, functional,

and financial points of view.

Public Administrations and Libre Software X 173

"Study
into the Use of OSS in the Public Sector," (http://europa.eu.int/idabc/en/doc-

ument/2623#study) June 2001. One of the first reports on the use of libre soft

ware in public administrations. Includes some general information on libre soft

ware, and details on libre software solutions (about 100 examples showing

specific systems that could be useful in the public context). It also analyzes the

deployment of libre software in Europe at the time of the report, and presents

some interesting conclusions.

Organization of meetings and symposiums for sharing experiences on the use of

libre software in public administrations in different countries. These have been

helpful for coordinating actions and establishing links among the promoters of

different initiatives.

The IDA Open Source Observatory. This is worth mentioning, as it provides a

good compilation of information about libre software, its situation in Europe,

and many issues especially relevant to public administrations.

Within the 1ST (Information Society Technologies; http://www.corfiis.Iu/isO research

program, the Commission has funded (and is funding) several projects related to

libre software. Many of them are aimed at the production of libre software in a given

domain, such as AGNULA (http://www.agnula.org; libre software distributions special

ized in audio and video). A detailed listing of those projects is available in the area

devoted to libre software in the Information Society Thematic Portal (http://europa.eu.

int/information_society/activities/opensource/european_activities). Some others are

devoted to researching libre software as a matter of study, with the aim of improving

general knowledge about it:

FLOSS (http://www.tn/onomtcs.nI/FLOSS) was the first academic research of the

libre software phenomenon as a whole, looking at it from many different points

of view. It included studies on the developers themselves, based on a survey and

on the analysis of author information in source code, focusing on sociological

data about them. It was the first to provide some insight about why developers

participate in libre software projects, what professional profile they have, what

amount of time they devote to libre software, and where they come from. The

study was also successful in the introduction of the name FLOSS (an acronym for

"free, libre, open source software"), which has since been used in many other

cases, especially within the research community.

AMOS (http://www.clip.dia.fi.upm.es/~amos/AMOS) was a project to research the

feasibility of building a system capable of categorizing and allowing searches

among libre software package descriptions. This is especially useful for develop

ers looking for code to reuse in their systems.

COSPA (Consortium for Open Source in the Public Administration; http://

cospa-project.org), started in 2003, aimed to analyze the effects of the introduc

tion of libre software and open standards in European public administrations.

174 ** Libre Software in Europe

FLOSS-POLS (Free/Libre/Open Source Software: Policy Support; http://www.floss-

pols.org) is a project started in 2004 as a follow-up to FLOSS, and includes research

tracks on government policy toward libre software, gender issues, and the efficiency

of libre software development methods for collaborative problem solving. FLOSS-

POLS will also deal with libre software in e-government, and will look for feedback

from governments in relation to policies about libre software.

CALIBRE is an action to coordinate the research on libre software in Europe, and

to help transfer its results to industry. It started in mid-2004, and has already

organized several conferences with a special focus on showing the results of libre

software engineering, or on the use of libre software within European industry.

In the following years, it is expected that more and more projects related to the study
of libre software will be approved in future calls, in what seems to be a growing
interest by the European Commission research work programs to understand how
libre software works from several points of view.

National Initiatives

At the national level, the situation is different from country to country. And even

among those who have started some kind of action related to libre software,

approaches are diverse. However, some common patterns can be identified. It is

unusual to find a national government that has not issued studies and recommenda
tions for the use of libre software in public administrations. There is also a certain

consensus on some matters that have been proposed again and again, such as consid

eration of libre software for public acquisitions, adherence to open standards and

interoperability, the need for inspection, and the importance of retaining proprietary

rights on software. In any case, the following brief descriptions of the state of affairs

in several countries should show both consensus and diversity of approaches:
18

France

ADAE (Agence pour le Developpement de rAdministration Electronique, Agency
for the Development of the Electronic Administration; http://www.adae.gauv.fr/

index.php3\ formerly ATICA, maintains a good deal of information related to libre

software in public administrations, and organizes activities related to that topic. It

has also published several reports of special interest. Among them, it is worth men

tioning the "Guide de choix et d usage des licences de logiciels libres pour les

administrations" 19 ("Guide to Choosing and Using Free Software Licenses for Gov
ernment and Public Sector Entities), a complete guide to the legal implications of

using libre software licenses, either for external software (obtained with or without

18 Some of this information was obtained from the European Information Society Thematic Portal,

http://europa.euAntfinformation_society/activities/opensource/cases, and from the Open Source

Observatory, http://europa.eu.int/idabc/en/document/l 677/471 .

19
http://www.adae.gouv.Jr/upload/documents/free_software_guide.pdf, linked from http://www.adae.
gouv.fr/artide.php3?id_artick=172, which includes a translation into English.

Public Administrations and Libre Software X 175

cost) or for software produced by the administration itself (recommending the GPL

in this case). There are also some recommendations for the promotion of libre soft

ware in the framework of e-administration programs, and cases of large-scale

deployment, mainly of OpenOffice.org, in French public administrations.

Also in France, two of the first proposals of laws related to the use of libre soft

ware in public administrations were produced. In 1999, Laffitte, Tregouet, and

Cabanel drafted in the French Senate the 2000-117 law project, aimed at enforc

ing the use of libre software in public administrations in those domains where

technical solutions were already available (considering a whole set of exceptions

and temporary measures to facilitate the transition period). It also considered the

creation of a Libre Software Agency, funded by the government, which would

help public administrations in the deployment of libre software technologies. In

2000, another law was proposed by Jean-Yves Le Deaut, Christian Paul, and

Pierre Cohen. It was similar in objectives and rationale, but was not compulsory

about the use of libre software in public administrations, but more focused on

the availability of source code for applications and on the principle of
"right

to

compatibility of software," which aims to guarantee the interoperability princi

ple, common in European legislation. Although neither of these projects was

approved, both have influenced later law initiatives in many other countries.

United Kingdom

There have been several studies and pilot experiences, which led in 2002 to the

publication by the OGC20 (the Office of Government Commerce) of a formal

policy on the use of libre software, "Open
Source Software: Use within UK Gov

ernment" (http://www.ogc.gov.uk/oss/OSS-policy.pdf)
which mandates not only the

consideration of libre software in procurements, but also that decisions must be

made considering "value for money" (a policy that has been widely copied in

many other countries, especially in the developing world). At the same time, it

establishes a policy of avoiding lock-in by proprietary software providers, sup

porting open standards and specifications, and exploring the use of libre soft

ware licenses for dissemination of research and development funded with public

money. A document on implementing this policy was also published. "Guidance

on Implementing OSS" (http://www.ogc.gov.uk/embedded_object.asp?docid=2498)

provides details on how and when to consider libre software, and includes a

detailed study of proprietary software lock-in practices and how to avoid them.

Some trials have also been conducted, with an interesting final report about

them, "Open
Source Software Trials in Government: Final

Report" (http://www.

ogc.gov.uk/embedded_otyect.asp?docid=1002367; published in late 2004), which

states the viability of libre software solutions, with different perceived levels of

maturity depending on the area of implementation.

20 http://www.ogc.gov.ufe/. Information related to libre software is at http://www.ogc.gov.ufe/index.

asp?docid=2190.

176
*
C Libre Software in Europe

In March 2005, the Open Source Academy was announced (http://www.egovmoni-
tor.com/node/319). Funded by the UK government, supported by several munici

palities and other institutions (including OpenForum Europe and Open Source

Consortium), and with the help of the private sector, it is aimed at the promo
tion of the use of libre software in local government.

Germany
The German federal government produced in 2002 one of the first official docu
ments dealing with the use of libre software in public administrations, "Open Source

Software in der
Bundesverwaltung"

2 !
("Open Source Software in the Federal

Administration"), by the KBSt (Coordination and Advisory Agency of the Federal

Government for Information Technology). Later, in 2003, it produced the
"Migra

tion Guidec"
(http://www.kbst.bund.de/Anlage303777/pdf_datei.pdf), one of the more

complete documents about how to migrate to libre software, including detailed

technical information about possible paths for migration in several domains. The
German government has also funded some libre software developments, or

improvements to existing systems, that were critical for its IT strategy. In 2005, it

announced the Open Source Software Competence Centre,22 a web site aimed at

spreading best practices regarding the use of libre software in the public sector.

Italy

In February 2004, the Italian government issued rules regarding the use and

acquisition of libre software in public administrations, "L Open source nella pub-
blica amministrazione."23 hey were formally made public after the release of an
official report, "Indagine conoscitiva sul software a codice sorgente aperto nella

Pubblica Amministrazione,"
2^ which presents some rather interesting conclu

sions on the characteristics of the use of software by public administrations. The
rules set the criteria to consider when acquiring software (which include interop
erability, nondependence on a single provider or on proprietary technologies,
availability of code for inspection, etc.), and specifically included libre software
as a possible choice.

Finland

A working group promoted by the Finnish Ministry of Finance produced in 2003
the report "Recommendation on the Openness of the Code and Interfaces of State

Information
Systems,"

25 which (among other interesting recommendations)
proposes the consideration of libre software for the custom developments funded

by the public administration and for the acquisition of software.

2 1
http://www.kbst.bund.de/dokumente/Publikation/,-300432/dok.htm. A long summary in English is
also available at

http://www.kbst.bund.de/Anlage302856/KBSt-Bnef+
-+English+Version.pdf.22 OSS-Kompetenzzentrum, http://www.kbst.bund.de/oss-cc.

23
http://www.governo.it/Governolnforma/Dossier/open_source/index.html.

24
http://www.governo.it/GovernoInforma/Dossier/open_source/open%20software%20PA pdf.25
http://www.vm.ji/tiedostot/pdf/en/6505Lpdf, referred in http://www.vm.fi/vmAiston/paze
lsp?r=65052&l=en&menu=2678

Public Administrations and Libre Software X 177

Denmark

The strategy of the Danish government with respect to libre software is exposed
in the report "Danish Software

Strategy,"
26

officially adopted in 2003. In sum

mary, the approach is based on the principle of obtaining the maximum value

for money, irrespective of the type of software (which is also the reason several

detailed studies on total cost of ownership in libre and proprietary software sce

narios are being carried out), but also not forgetting the importance of promot

ing competition, interoperability, and flexibility. Some preliminary studies per

formed prior to this report showed potential major savings could be made

through the use of libre software. 27

Sweden

In 2003, Statskontoret, the Swedish Agency for Public Management, published

"Free and Open Source Software, a Feasibility Study,"
28 a complete and detailed

study of libre software, including cases in Swedish public administrations, with

very positive conclusions.

Spain

Many of the interesting developments related to libre software in Spanish public

administrations have been achieved at the regional level. However, there are also

some interesting actions by the national government. One of the most revealing is

the inclusion of measures related to libre software in the document "Criterios de

seguridad, normalizacion y conservacion de las aplicaciones utilizadas para el ejer-

cicio de potestades"
29

("Criteria of Security, Standardization and Conservation for

Applications Used in the Exercise of Authority"), edited by the Consejo Superior

de Informatica (Higher Advisory Board on Informatics), an interministry body of

the Spanish administration. It details the issues to consider for all the applications

used by the public administration and recommends specifically the use of libre

software whenever technically feasible. It also recommends requiring the availabil

ity of source code for programs acquired by the administration, the use of open

formats, and the use of libre software applications to access some kinds of data.

The Netherlands

The OSOSS program (http://www.ososs.nl) is aimed at encouraging the use of libre

software and open standards in public administrations. OSOSS is a program of

ICTU, the national organization for IT in the public sector, founded by the Minis

try of the Interior. In the context of this program, libre software is promoted as a

26 http://www.oio. dk/files/Softwarestrategi_-_Engelsk.pdf (available as a part of the Offentlig

Information Online, http://www.oio.dk/so/tware).

27 http://www.tekno.dk/subpage.php3?artide=969&survey=14& langu.age=uk&&gt;front=l.

28 http://www.statskontoret.se/upload/Publikationer/2003/200308A.pdf (in English).

29 http://www.csi.map.es/csi/criterios/pdf/criterios.pdf. A summary available at http://www.csi.map.es/

csi/pg5d0.htm.

178 xC Libre Software in Europe

full-fledged option. OSOSS is basically an informative advisory body, supporting

policy makers in exploring the relationship between libre software and public

administrations.

Norway
The issue of libre software in the public administration has been dealt with by
the Norwegian Board of Technology (a public, independent think tank on tech

nology) in its report, "Software Policy for the Future"30 (November 2004). It rec

ognizes the potential interest of libre software, and recommends a policy similar

to that of Denmark: pilot programs and careful case-by-case studies.

Other Initiatives in the Public Sector

There are many other initiatives in the public sector. Among them, we have selected

a short list which we have found especially meaningful as illustrative examples of the

whole landscape:

Extremadura (Spain) is a small, with a population of about a million, and rela

tively cash-poor region that has defined a strategy based on libre software to catch

up on information society issues. The main principles of this strategy are connec

tivity and IT literacy for all citizens. One of the key projects for implementing it is

gnuLinEx (http://linex.org), a GNU/Linux distribution originally targeted for pri

mary and secondary education (deployed in tens of thousands of computers in all

public schools), but which is now also used in the public administration and

offered to SMEs and individuals. One of the latest initiatives announced by
Extremadura (jointly with Lambdaux (http://lambdaux.com), a Spanish libre soft

ware company) is the CompatibleLinux (http://compatibldinux.org) catalog, an

analysis of the hardware available in the market with respect to its compatibility
with GNU/Linux distributions. This initiative has also led to the AENOR31 com

patibility certificate, which can be specified by public administrations and compa
nies seeking to purchase hardware for use with GNU/Linux distributions.

The French police (Gendarmerie Nationale) started a plan in 2004 to switch to

OpenOffice.org in all its desktop machines32 (about 80,000 PCs). They expect to

complete the switch by the end of 2005. They estimate savings at about EUR 2

million.

The Kolab Groupware Project (http://kolab.org) was initiated in 2003 as a spinoff
of the Kroupware contract (http://kroupware.org), which was funded by the Ger
man Bundesamt fur Sicherheit in der Informationstechnik (BSI, Federal Agency

30 http://www. teknologiradet. no/files/enddig_rapport^)rogramvarepolitikk_0066_20041 1 09.pdf (full

report, in Norwegian); http://www.teknologiradet.no/files/english_summary_041223_copy.pdf
(executive summary, in English).

31 AENOR is the Spanish standardization organization; http://www.aenor.es.
32

http://www.solutionslinux.fr/document_conferencierH20c7d6295f27.pdf.

Public Administrations and Libre Software X 179

for IT Security) and won by a consortium of three companies: erfrakon, Inteva-

tion, and Klaralvdalens Datakonsult. Kolab is today a libre software system that

allows for the interaction among mixed groupware environments: KDE, Out

look, and web-based tools. This is one clear case of the promotion of a new libre

software project by a public administration (in this case, because it was inter

ested in overcoming this missing functionality in the libre software world).

The city of Munich (Germany) started in May 2003 a plan to migrate to GNU/

Linux and libre software (LiMux)33 most of its desktop machines (some 14,000

PCs). This initiative, which started as a political one (including in the process a

delay to get attention to the proposed European directive on software patents, dur

ing the summer of 2004), is backed by detailed studies and has had a lot of media

attention. Despite this attention, the project had not been completed at the time of

this writing. However, it seems to have started a trend followed by some other

European cities (although there are also earlier cases, such as the city of Florence,

which passed a law in 2001 mandating the use of libre software when feasible34).

Rijkswaterstaat
35 (Directorate for Public Works and Water Management, the

Netherlands) has been using the Geoservices system, heavily based on libre soft

ware, since 2003. Rijkswaterstaat has the responsibility of maintaining dikes,

roads, bridges, and canals, and uses Geoservices for web-based access to geo-

information obtained from many different sources.

The Junta de Andalucia (regional government of Andalucia, the most populated

Spanish region) has instigated two of the few laws related to libre software that

are actually in force. The first one was the "Decree of measures to push the

knowledge society,"
36 which deals with (among other issues) the use of libre

software in education. It fosters the use of libre software in public schools (not

mandating it exclusively) and mandates that computers purchased for that use

be compatible with libre operating systems. The second law is an order approved

on February 21, 2005,37 which mandates the distribution as libre software of

any program owned by the Junta de Andalucia. This order basically amounts to

releasing a large quantity of code to the libre software community, doing the

same for new programs built on behalf of the Junta. To the knowledge of the

authors of this chapter, this approach is completely novel and marks the begin

ning of a new path in the promotion of libre software by public administrations.

33 http://www.muenchen.de/Rathaus/referatc/dir/limux/89256/ (note by the city of Munich) http://

news.zdnetco.uk/software/applications/0,39020384,39171380,00.htm (note in ZDNet).

34 http://www.softwarelibero.it/portale/legislazione/mozione_comune^irenze2.shtml.

35 http://www.rijkswaterstoat.nl; report on the experience available at http://europa.eu.mt/tdabc/en/

document/3934/4 70&gt;.

36 Decree 72/2003, March 18, BOJA of March 21; http://andaluciajunta.es/SP/AJ/CDA/Secciones/

Boja/AJ-BojaPagina/2004/i 0/AJ-verPagina-2004-10/0,20748,bi%253D696836605883,00. html.

37 Published in the BOJA of March 10, 2005; http://www.andaluciajunta.es/SP/AJ/CDA/Secciones/

Boja/AJ-BojaPagina/2005/03/AJ-verPagina-2005-03/0,22557,bi%253D699234368885,OO.html

180
* *

Libre Software in Europe

Bergen, the second largest city in Norway reported a strategy, already deployed
in large part, of using Linux on servers38 (including the servers of the network

for schools). The experience seems to allow for cost cuts both in hardware and in

software, and includes the wide use of libre software instead of proprietary solu

tions for many services.

The city of Vienna (Austria) announced in early 2005 a plan offering its depart
ments migration to OpenOffice and GNU/Linux on the desktop.

39 The migra
tion plan is voluntary, linked to lower costs charged by the city s IT department,
and is currently targeted for about 7,500 desktops. For this solution, a Debian-

based distribution (Wienux) has been created.

Legal Issues

Legal issues are still largely undecided for libre software worldwide. However, some
of these issues are specific to Europe. Among them, we have selected two cases: the

European Union directives (affecting most of Europe) that have (or may have,

depending on approval) a negative impact on libre software; and the concerns about

the validity of libre software licenses within European jurisdictions.

EU Directives with Negative Impact

For sure, not all legislative initiatives in Europe in the field of software have a neutral

impact on libre software. In some other cases, important laws have been passed (or

are in the process of approval) that cause serious problems by producing an environ

ment hostile to libre software. Two of the most relevant cases are:

Directive on software patents
40

Although software patents may affect any kind of software, the libre software

community is especially concerned about the problems it poses for the freedom

of innovation. The directive on software patents (actually, "Directive About Pat

entability of Computer Implemented Inventions") was proposed by the Euro

pean Commission in February 2002. If approved as such, it would mean the

introduction of software patents in Europe very similar to those in the United

States.

Early in the process, groups all over Europe started to explain the problems this

directive would cause to European software developers (be they individuals or

38
http.7/www.!ini^/omm.dfe/2005/program/slides/LinuxIBergen/Linioc_i_Bergen_-_Tu/(edaI.ppt (slides,
in Norwegian), http://europa.eu.int/idabc/en/document/3471/469 (note in IDABC), http://news.

2dnet.co.ufe/so/tware/Iinuxunix/0)39020390,39173557,OO.htm (note in ZDNet).
39

Http://news.2dnet.co.ufe/so/tware/!inuxunix/0)39020390,39185440)00.htm (note in ZDNet).
40 There are many web sites with information on the directive on software patents. Probably the

most complete about software patents in general (including information about the directive itself),
and the European campaigns against them, is the site of the FFII group, http://swpat.ffii.org.

Legal Issues
**

181

companies) and users. In part thanks to the awareness caused by this campaign,

led to a great extent by libre software activists, the European Parliament passed

in September 2003 a set of amendments which, together, would amount to the

invalidation of software patents in Europe. Meanwhile, the European Council of

Ministers (representatives of EU national governments) has approved a text even

more radical than the proposal of the Commission, allowing more clearly for

software patents, in a rather strange meeting in March 2005 (http://kwiki.ffii.org/

Cons050307En) . Things are in quite a mess at the time of this writing. The Parlia

ment asked the Commission to withdraw its proposal, what was refused, enter

ing into the "second reading" stage, which will lead to a new vote in Parliament,

probably during the summer of 2005. All in all, this directive proposal is having

one of the more complex, strange, and time-consuming paths ever seen in Brus

sels. There is a strong perception in the libre software community in Europe that

the introduction of software patents would be a strong barrier to the develop

ment of libre software. On the contrary, if Europe were to remain free of soft

ware patents, libre software development would benefit from much more legal

certainty, a friendlier environment, and a more level playing field.

The European Union Copyright Directive (EUCD) 41

This was approved in 2001. It is in many respects similar to the Digital Mille

nium Copyright Act (passed in the U.S.). It poses risks for libre software: the

impossibility of distributing programs for handling certain file formats (for con

tents subject to the EUCD), and of interoperation with certain systems. This

directive can make it illegal to produce libre software programs for handling

DVDs, for instance. The libre software community is concerned about this prob

lem, but is not mobilized to the same extent as in the case of software patents.

Although there are other legal initiatives in Europe hostile to libre software, these two

are the more well-known ones. In particular, there is now discussion about DRM sys

tems and the legislation surrounding them, which could develop into very danger

ous laws making it impossible for a libre software system to handle content such as

e-books, movies, and music. Only the future will say whether the legal environment

that was, until the late 1990s, basically neutral to libre software will evolve into a

fairly hostile one.

Libre Software Licenses in Europe

Most (in fact, almost all) libre software licenses were formed in the United States, in a

jurisdiction alien to European countries. Therefore, for many years now, there have

been concerns about the validity of those licenses in European jurisdictions. This has

spawned many efforts in different directions: either to assess the validity of, or to trans-

41 There is information about how EUCD affects libre software in the FSF Europe web site, http://

www./sfeurope. org/projects/eucd/eucd. en. html.

182 ^ C Libre Software in Europe

late and localize such licenses, having versions valid in every European country. Until

now, the former approach has had more impetus, as is shown, for example, in the

aforementioned
"Pooling Open Source Software" study, which includes a detailed

review of the validity of the GPL and other libre software licenses, concluding that it is

valid for practical purposes. The latter approach is tricky, since it could contribute to

the fragmentation of the libre software world and to endless problems in cases of inter

national collaboration (so common in libre software projects). That is why many peo

ple from the legal community are considering the proposal of international regulations,

which would complement intellectual property treaties with the consideration of libre

software, given clearer international support for these licenses.42 However, two of the

clearer cases of the validity of libre software licenses in Europe happened in Germany.
On April 14, 2004, a German court granted a preliminary injunction to stop distribu

tion (by a company called Sitecom; http:7Avwvv.siiec0m.c0m) of a router that included

code (Net-filter/IPtables) licensed under the GPL, yet failed to comply with its provi

sions, because Sitecom did not distribute the source code. This preliminary injunction

was confirmed on July 23, 2004,43 along with a significant judgment, after which Site

com started to provide the source code on its web site. The second case was also a pre

liminary injuction (http://yro.slashdQt.org/article.pl7sidr05/04/14/2024258), also for the

use of Net-filter/IPtables code in some firewall products distributed by Fortinet.(http://

www.fortinet.com). Both cases have lent weight to the GPL worldwide, but particularly

in the German jurisdiction (and in other European jurisdictions of similar tradition).

Libre Software in Education

One of the fields where libre software has entered with most impetus in Europe is

education. This does not mean that libre software is mainstream in European educa

tional institutions, but that there are several very clear examples that seem to have

been successful and that are currently being considered in many other realms. For

several reasons the specific advantages of libre software in the education field, the

importance of localization, the lack of suitable tools for many educational tasks, the

funding problem so ubiquitous in education, and the readiness of large parts of the

educational community to accept and embrace its assumptions and philosophy this

field seems to be especially receptive to libre software.

For illustrating this rich landscape of experiences, we have selected four examples
that have come to our attention:

SkoleLinux
(http://sfe0fchnux.org)

is a successful case of a grass-roots effort to

bring libre software to the education world. It was formed in 2001 as a project

42 One of such proposed regulations is the Free Software Act, http://www.fsc.cc/node/view/69.
43

http://www.heise.de/newsticfeer/meldung/49377 and http://yro.slashdot.org/artide.pl?sid=04/07/23/
1558219; see also http://www.oti. ox. ac.uk/resources/feedbacyOIIFB_GPL2_20040903.pdf for a
translation into English of the Court decision.

Libre Software in Education X 183

for developing software systems for schools in Norway. It was originally aimed at

the localization of a GNU/Linux distribution for that country (mainly by translat

ing it into Norwegian written languages), to improve the installation and mainte

nance so that it would be suitable for the needs of schools (including distributed

administration), and to promote the introduction of the product in Norwegian
schools. In this respect, it has been successful, being used in many schools in

Norway and other countries, with a healthy community of developers and users

around it. The project has been funded by a loan from the SLX Debian Lab

Foundation, which pays for three employees and has strong relationships with

the Debian project.

gnuLinEX (http://gnultnex.org) is promoted by Junta de Extremadura, the regional

government of Extremadura, Spain. It is a part of a larger project (already men

tioned in the section about public administrations). gnuLinEX is a Debian-based

distribution, completely localized, which is currently deployed in the whole pub
lic education system of the region (about 66,000 computers in 2004, mainly in

schools) and is now being considered for other kinds of environments. Teaching

materials and specific applications for education are also being developed (usu

ally under libre software or libre documentation licenses). A complete strategy

encompassing training, support, development, and dissemination within the

society of Extremadura is also being put into practice. The project started in

2002 and is evolving into a complete strategy for the promotion of the use of

information technologies based on libre software. gnuLinEX was the first of a

series of education-oriented libre software distributions that have been deployed

in many other Spanish regions.

AbulEdu (groupe Education de 1 ABUL; http://abuledu.org) is a French project ori

ented toward the use of libre software in schools. Its best known product is a

GNU/Linux distribution, completely in French, developed mainly by volunteers.

It includes many educational software products, and is designed to be simple to

maintain in the environment usually found in classrooms. It is currently in use in

many schools all over France.

SIGOSSEE (Special Interest Group on Open Source Software for Education in

Europe; http://ossite.org), co-funded by the European Commission, has been

established to investigate, inform, and advise about libre software in education. It

is a kind of umbrella project providing a common space for many working

groups, organizing many conferences, workshops, and seminars, and acting as a

framework for relationships with other projects (such as JOIN, devoted more

specifically to libre software learning management systems). This is a good case

of a mixture of grass-roots and government-promoted efforts and has been suc

cessful in disseminating the advantages of libre software for educational organi

zations all around Europe.

184 x x Libre Software in Europe

Another interesting development related to education has been observed over the last

two years: the appearance of studies specifically oriented toward explaining the libre

software phenomenon, usually from many different angles, including technical, eco

nomic, legal, and sociological. We are not referring here to technical courses about

software systems which happen to be libre, but to studies about libre software itself,

which are usually aimed at developing an understanding of the complex interactions

between technology, development processes, business models, licensing schemas,

volunteer motivation, etc., which are inherent in libre software. Those would be

needed, for example, to drive the libre software strategy of a company. At the time of

this writing, we know about some master s-level programs which point in that direc

tion: those delivered by Universidad Oberta de Catalunya
44

(Spain, started in 2003),

and Universita di Bologna
45

(Italy, started in 2004). More programs are due to start

in 2005. And an informal group of universities, the MoLOS group (Master on Libre,

Open Source Software), is designing a curriculum suitable for being taught as a mas
ter s study in the context of the new European Higher Education Space.

Research on Libre Software

An active research community is concerned with libre software in Europe. From soci

ologists and economists to software engineers, the interest in studying and under

standing this phenomenon is on the increase.

One of the first projects specifically devoted to analyzing the libre software world was
the aforementioned FLOSS Survey and Study (led by Rishab Ghosh, University of Maas

tricht, Netherlands, and finished in 2002). It opened several lines of research, from

authorship of libre software code to motivations of libre software developers. Some other

pioneering works were performed by Stefan Koch (http://wwwai.wu-wien.ac.at/~feoch/

uni.html) in Wirtschaftsuniversitat Wien (Austria), who in 2000 was already studying
the GNOME project from a quantitative point of view, and by the group to which the

authors of this chapter belong, at Universidad Rey Juan Carlos (Spain), who were study

ing Debian at the same time.

Also in 2001, one of the first research workshops on libre software engineering took

place, the Workshop on Open Source Software Engineering (http://opensource.ucc.ie/

icse2001), organized by Joseph Feller and Brian Fitzgerald (both then at University

College Cork, which hosts an active group on libre software engineering (http://open-

source.ucc.ie); Brian is now at the University of Limerick, also in Ireland) and Andre
van der Hoek, and continued every year since. It is interesting to note that in that

many of the papers presented at the workshop were by European groups, even

though it was held in Toronto.

44
http://www.uoc.edu/masters/softwarelibre/esp/index.html.

45 http://www. unibo. it/Portale/Master/Master+Universitari/2004-2005/Tecnologia+del+So/tware.htm.

Research on Libre Software , C IBS

Since those early day s many research groups have joined this field in Europe. Just to

name a few of those researching libre software as a matter of study, we can mention

(in no particular order):

The FLOSS group at MERIT, University of Maastrich (http://www.in/onomtcs.nl/

FLOSS; the Netherlands; focus on the economics of libre software and the moti

vations of developers)

The Software Engineering Group at Aristotle University of Thessaloniki (http://

sweng.csd.auth.gr; Greece; strong emphasis on studying the development processes)

The Open Source group at University College Cork (http://opensource.ucc.ie; Ireland,

research on libre software processes)

The Software Engineering team at the Department of CSIS, University of Limerick

(http://www.csis.ul.ie; Ireland; focus on processes, organization, and coordination)

The Libre Software Engineering group at the University Rey Juan Carlos (http.7/

libresofldaLescet.urjc.es , Spain; focused on the quantitative and qualitative analy

sis of projects)

The Distributed Software Engineering Group at University of Lincoln (http://

/acs. lincoln.ac.uk/Research/Distributed; the UK; focused on the relationship of

libre software development and agile methods, and on its distributed

component)

The Software Engineering Group at Politecnico di Torino (Italy; focus on evolu

tion and maintenance)

The Center for Applied Software Engineering at Free University of Bolzano-

Bozen (Italy; research on metrics applied to libre software and its relationship to

agile methods)

The team at the Institute of Computing Science at Poznan University of Technology

(http://www.cs.put.p02nan.pl; Poland; focus on data mining of publicly available

information)

The Open Source Group at the University of Szeged (http://www.inf.u-szeged.hu/

opensource; Hungary; publishing on quality and complexity metrics)

The Science and Technology Policy Research team at SPRU, University of Sussex

(http://www.sussex.ac.uh/spru/J-4-9.html; the UK; focus on the economics of libre

software development)

The Open Source research team at Technical University of Berlin (http://ig.cs.tu-

berlin.de/forschung/OpenSource; Germany; research on economics and politics of

libre software)

IBB ^ C Libre Software in Europe

There are, of course, many more research groups, and not finding one here implies

nothing but my poor knowledge (please, forgive me if you are one of those not named).

In particular, note that only groups, and not individuals, have been mentioned.

Some of these groups are partners in the CALIBRE (http://calibre.ie) coordinated

action (already mentioned in the section about public administrations), funded by
the European Commission and aimed at coordinating some of the research on libre

software being performed in Europe and transmitting its results to industry.

Although it is difficult to tell, we think that European research on the libre software

phenomenon is at a very high level, and when compared to similar efforts in other

parts of the world (mainly in the United States), it may be more focused on under

standing how libre software projects work (whereas in other cases, the understand

ing is more a side effect of analyzing software development in general).

The Future Is Hard to Read....

We have tried to show how libre software is flourishing all over Europe. Of course,

there are many differences throughout an area where diversity is the rule, but also

many coincidences. For now, Europe is an important pillar of the libre software

world, and is maintaining an equal leadership of it. We have a large share of develop
ers; there are companies producing, maintaining, using, and providing services; and
our public administrations seem to be aware of the libre software phenomenon.

However, experiences are fragmented. Few companies are based on libre software in

Europe as a whole, although an increasing number are working at the national and

regional levels. The developer community, and the libre software community in gen
eral, is in fact a collection of loosely linked national or linguistic communities, with

very little coordination among them. We do not have common news sites, and there

are very few umbrella organizations, or even meeting events, recognized throughout

Europe. The initiatives of the public administrations may be a bit more coordinated,
but even those are wildly different from country to country. Maybe all this is just a

consequence of the fragmentation of Europe or maybe it is a first step toward a real

European space of libre software. Whatever the reason, for now the real impact of

European initiatives in the libre software world is far lower than the relative impor
tance of libre software in Europe. In a few specific cases (such as the campaign
against the directive on software patents, which is not carried only by libre software

activists), we are starting to see coordinated movements that show the real strength
of libre software in Europe.

In this context, we still have to wait to see whether Europe will capitalize on its cur

rent leadership in libre software penetration or, on the contrary, will lose this position
in favor of other regions with a clearer and more active policies of promotion. The

coming years will tell but, for now, we have the potential to be the first economic area

to experiment with the benefits of large-scale deployment of libre software, creating a

The Future Is Hard to Read.... X 187

whole new industry around it, and promoting not only companies, but also the indi

vidual developers who are making this a real possibility.

In case libre software provides real advantages in terms of innovation, competence,

and social benefits, Europe is well placed for advancing in that direction. Are those

opportunities not worth exploring? Can we risk losing our advantageous position in

what could be the next revolution in the information society?

188
*
C Libre Software in Europe

XX
XX
Alolita Sharma and
Robert Adkins

CHAPTER 12

OSS in India

In modern times, India has accomplished miracles through the power of collabora

tion. Free and Open Source Software (FOSS) has the potential to accomplish yet
another set of miracles in automating government and industry, and producing
affordable education for all.

Three earlier revolutions using collaboration have dramatically improved the basic

infrastructure within the country. The first revolution was called the Green Revolu

tion, which started in the 1970s and took India from being a grain deficit to a grain

surplus country. The second revolution, in the 1980s, was the White Revolution,

which used the power of dairy cooperatives to enable large-scale milk production.
Not only could India s own population be satisfied, India also became an exporter of

dairy products. The third revolution, in the 1990s, was the Gray Revolution, which
used India s plethora of English-speaking engineers and scientists to capture a signifi

cant share of the world s outsourcing business in software and pharmaceuticals.

Open Source Software (OSS) is poised to become the next revolution perhaps
named the Gold Revolution. OSS promises to build India s local infrastructure and cre

ate new wealth based on information services.

ion
189

Business

OSS is a boon for the Indian export market. However, automation of any sort is only

beginning in the domestic market. Hence the local market languishes in the adop

tion of all automation tools, whether proprietary or open.

Domestic Market

The localization and adaptation of computer-based solutions to move the local econ

omy in India from pre-automation to automation continues to be a very slow march.

Business processes remain predominantly manual. For example, it is reported that

most doctors in India are practicing the same way they did 75 years ago with pen

cils and pieces of paper. Ideally, OSS can promote the cost-effective adoption of

automation, especially when legacy constraints are minimal. However, ground reali

ties often discourage adoption of OSS.

Developing economies such as India s tend to foster low wages for services and sup

port while permitting low prices for proprietary products because of piracy. This has

led to a proliferation of proprietary technologies with affordable support structures

and, at the same time, a resistance to OSS.

The resistance to OSS is driven by three main factors:

The parity of "purchase price"
when equalized by piracy

The perception of a lack of maturity of OSS solutions

A higher cost of support due to relative scarcity of Linux-trained labor

However, a recent trend is the emergence of local businesses that provide support for

point solutions important to small to medium-size enterprises (SMEs) in India. For

example, companies have sprouted up in metropolitan areas to support the migra

tion of email from large-scale proprietary server environments to the equivalent OSS

solutions. This is partly because companies which have significant server-based infra

structure have been recent targets of licensing enforcement campaigns by propri

etary vendors and government enforcement agencies. The perception of increased

risk in using unlicensed software has provided the impetus for OSS adoption.

In contrast, automation for the export economy in India, with its highly skilled,

English-speaking workforce, is beginning to exploit some of the new business oppor

tunities offered by open source, especially in providing services for migrations from

Unix to Linux and from Microsoft platforms to Linux.

Outsourcing and OSS

Meeting the needs of the outsourcing market, low wages in India have fueled a sub

stantial generic services economy with a global reach. Now, the outsourcing industry

is beginning to take a serious look at using OSS for Information and Communication

190 xx OSS in India

Technology (ICT) solution development and implementation, for migration services,

and for complex systems integration. As early as 1998, Dr. Ajay Shah, a consultant to

the Indian Ministry of Finance, realized the importance of exploiting the inherent

characteristics of OSS to build a services industry which could amplify the tradi

tional Indian outsourcing services business. Today Indian companies like Tata Con

sultancy Services (TCS) have translated Dr. Shah s realization into sophisticated

methods of services provision for example, employing the state-of-the-art
"ongoing

cost reduction formulas" for client companies using the year-over-year economic

advantages of OSS. The emerging market for OSS-based development and services

has created high-value jobs in India for developers and, in addition, for business pro
cess analysts and service providers.

A principal portion of OSS outsourcing requirements centers around migration from

older software platforms to Linux. For example, interest is rapidly increasing in

retooling software from earlier, proprietary Unix platforms to Linux. Much of the

conversion of traditional Unix applications and tools, like the earlier bonanza of Y2K

work, is being done in India.

A second set of OSS outsourcing requirements involves building custom business

applications using the new open source environments.

Companies taking advantage of these new outsourcing opportunities include HP
India, Cognizant, Infosys, Wipro, Mindtree, IBM India, and many others.

Infosys, a top Indian IT company, is building a Linux migration practice as part of its

multidimensional systems services and integration business strategy. Recent projects

at Infosys illustrate both migration services and custom application development. For

example, to meet the needs of a large petroleum industry client, Infosys ported appli

cations for visualizing oil exploration data to Red Hat Linux from Solaris and IRIX.

For another client, Infosys migrated a multinode high-availability application cluster

from Solaris to Linux. In a project to help a leading peripheral manufacturer in Japan

develop a new cost-effective product line, Infosys built Linux-based POS terminals

using Java POS international standards.

Well-publicized projects at Wipro in the financial services and messaging services mar
kets also illustrate the harnessing of OSS to drive cost-effective outsourcing services.

Government

OSS is providing the first steps toward an information society in India and thereby

helping to close the digital divide. Examples include the Open Source Simputer

project, CoIL-NET &r TDIL localization projects, e-governance projects, and others.

Government X 191

Maharashtra and Kerala state land record systems have separately demonstrated the

cost effectiveness of applying OSS, including database technologies, to what tradi

tionally has been a slow and manual process.

Government-sponsored software technology parks of India (STPIs) are often used by

companies to demonstrate their solutions to large government customers. One exam

ple is a 2003 MoU between IBM and the state of Karnataka to build an OSS center of

excellence in the government-built Hubli software technology park. IBM has also set

up a similar Linux Center of Competency in Bangalore, which provides development

and testing services for Linux applications. Other OSS resource centers have been

built or are being planned.

Two 2004 MoUs between IBM and the state of Uttaranchal have initiated a statewide

university education program and an eGovernance program for an OSS-based frame

work addressing both legacy and new applications. These applications cover munici

pal services for record keeping, taxation, and social and health programs.

Also, IBM signed an MoU with the union territory of Chandigarh to set up an

eGovernance Solutions Center for Linux for the local government. The center will

help Chandigarh develop eGovernment applications using open standards and

IBM s open source-based development framework.

Oracle s eGovernance Center of Excellence, set up in partnership with HP in the state

of Haryana, helps government agencies develop better ICT policies and deploy

improved ICT systems using OSS and Linux.

Challenges in Local Adoption of OSS

The trend toward OSS adoption faces a number of significant challenges.

Support

The perceived lack of support available for OSS in India is largely due to support ser

vices being readily available for legacy platforms. The legacy support industry has

been built over many years. However, today there are a growing number of channels

of support for OSS. Because of its collaborative nature, a great deal of high-quality

yet inexpensive or free help for OSS is provided online. Furthermore, if a user has

money, the same level of support is available for OSS as for proprietary solutions,

and at the same prices. It should be noted that, while readily available, legacy sup

port is often of poor quality. Furthermore, users or organizations that already have

Unix skills find few difficulties in supporting OSS applications or systems. As more

students trained in OSS enter the workforce, increasing support services options will

emerge. In addition, as more OSS services revenues are derived by the software

industry, the OSS services infrastructure will mature, and greater fulfillment of sup

port requirements will be possible.

192 X OSS in India

Piracy

The high seas are unfriendly to both OSS and proprietary products.

According to industry sources, more than 70% of proprietary software is pirated in

India. Rampant piracy equalizes the price between "free" software and proprietary
software. Since there is little legitimate market value for proprietary desktop pack

ages, there is little financial incentive to develop a local software product market. IT

growth is consequently stunted. OSS is seen, by some, as an antidote to these effects

because it has the potential to transform the technology consumer of proprietary

products into a technology collaborator of open solutions.

India s commitment to maintain compliance with World Trade Organization (WTO)
and WIPO standards in the protection of intellectual property will encourage the

proliferation of OSS packages. In particular, antipiracy drives and subscription

licensing models are already improving the attractiveness of functionally equivalent
OSS packages in India.

Localization

Proprietary as well as OSS vendors have committed considerable resources to localiz

ing software in India. Microsoft has pledged millions of dollars to the localization of its

proprietary software in Hindi, Marathi, and other major Indian languages. Red Hat has

announced a plan to build a U.S.$250 million center to support localization and other

software development. IBM has initiated various multimillion-dollar localization

projects. Government agencies such as the Center for Development of Advanced Com
puting (C-DAC) and the Department of Information Technology (D-IT) also have

active programs to develop localization solutions. And OSS community resources have

initiated projects to localize various components of the OSS suite. Examples include the

Indie-Computing Project, and IndLinux.

Localizing the killer applications of open source, such as OpenOffice.org, the KDE
and GNOME suites, and the Mozilla browser and email applications, has increased

adoption and usage by the non-English-speaking majority of Indians.

In fact, localization efforts are the main channel by which Indian contributions are

being made to OSS projects. Desktop localization projects are the most active collab

orative efforts in India. Projects include BharateeyaOO, IndLinux, JanaBhaaratii, and

AnkurBangla.

The BharateeyaOO project represents the "Indianization" of OpenOffice.org. It is a

cross-platform project for translating a rich office productivity suite into languages
appropriate for non-English-speaking Indians. Availability of major computational
tools in local languages is already helping to bridge the digital divide and spread
computer usage and learning in the rural areas of India.

Challenges in Local Adoption of OSS
*

193

The IndLinux project has created a Linux distribution that supports major Indian

languages, including Hindi, Punjabi, Oriya, Telegu, Bengali, Gujarati, Kannada,

Malayalam, and Tamil. Like BharateeyaOO, this project tries to bridge the digital

divide by bringing the benefits of computer and information technology to non-

English-speaking Indians.

The AnkurBangla project has created a Bangla-language Linux distribution as well as

Bangla support for some major applications such as office suites, databases, develop

ment tools, and desktop environments like GNOME and KDE. The project s objec

tives include developing and maintaining open source software targeted toward

Bangla-speaking users.

JanaBhaaratii is an Indian government project run by the C-DAC and is funded by

the D-IT. This project uses OSS to promote localized computing applications. The

project will develop and deploy technology in Indian languages for a broad range of

areas such as home use, mass applications, education, rural areas, info-kiosks, cyber-

cafes, and e-governance.

Other projects include localized regional voter registration applications, such as the

Voter List project, which uses a bootable CD distribution called GNUBhaaratii that is

based on Morphix.

Culture

India s work culture embodies a complex mix of both rigid hierarchy and elastic

opportunism.

Opportunism drives the consideration of special favors at all levels of economic activ

ity in India. It is common to hear senior Indian administrators say that there is "no

money"
to be made in procuring OSS. Today, the Indian form of guanxi in the OSS

world is a trickle at best. But some form of guanxi may always be needed to success

fully conduct business in India. Guanxi "reciprocity" may ultimately be based on the

growing wealth from the IT services economy. However, if some measure of transpar

ency and containment of corruption is to be achieved, cost-effective and pervasive

automation is key to reducing discretion in the conduct of government and in the

application of governance. It s icing on the cake that automation can be achieved using

legitimate, nonpirated OSS tools.

Organizational rigidity is the other face of India s work culture. India s tradition of

social hierarchy in the workplace tends to reduce the value of collaboration. While

innovation is a strong Indian value, collaboration is not. Traditional Indian business

culture is strictly hierarchical. Collaboration with peers is less valued than perform

ing a prescribed duty according to one s place in the organizational structure. This is

slowly changing, as more relaxed and flexible Western business practices are

adopted. Collaboration inhibitions are reflected in the lack of contributions to collab

orative OSS projects.

134 X OSS in India

Software Patents

Intellectual property concerns affect all software, whether proprietary or open source.

Globally, the status of software patents is unclear, with a number of initiatives in var

ious stages of contest. Software patents are allowed in both the U.S. and Japan. The

European Union is examining its options. In India, unconstrained software patents
are not yet allowed. However, recently, the government of India amended the Indian

Patents Act to support patenting of embedded software to conform to WTO/WIPO
agreements. There is strong pressure from industry bodies such as NASSCOM to

extend IPR protection to all forms of software as a way of strengthening the Indian

software industry. The counterview that patents serve to inhibit innovation in soft

ware is not widely recognized and, unfortunately, the FOSS community appears to

be having minimal influence on keeping software free from patents. The new patent

protections for embedded software came into effect January 1, 2005.

OSS in Education

Despite its IT prowess, India lags behind in contributing to large-scale OSS projects.
It also lags behind in the use of OSS in the educational curriculum at all levels.

Nonetheless, OSS is viewed by many in Indian industry and government as a key for

improving the quality of education.

The enthusiasm for OSS in education is still in its infancy, since India s secondary
school curriculum is today oriented toward proprietary products such as Microsoft

Office, Windows applications, and development environments like Visual Basic and
database applications like SQL Server and Oracle. In the curriculum, there is little

support for generic computing concepts or platform-neutral software applications.

But there are exceptions, where FOSS advocates have worked with local school

administrations to teach computing concepts using open tools and development
environments.

More significantly, industry players such as Red Hat, Novell, IBM, and Intel have ini

tiated open source resource centers and internship programs to grow the talent pool
of open source engineering in India. Intel, in conjunction with the Department of

Information Technology, has established an Open Source Resource Center to pro
mote ICT education and curriculum development. IBM and the C-DAC have created
an Open Source Software Resource Center (OSSRC) in Mumbai to foster OSS devel

opment, to increase understanding of OSS models, and to develop courseware which

promotes OSS skills and builds a national OSS talent pool. Red Hat has launched a

scholarship program with IIT Bombay to encourage OSS development skills. Novell
has started an OSS internship program to boost student participation and contribu
tions from India in OSS projects such as Mozilla, GNOME, and OpenOffice.

OSS in Education *C 195

Conclusion

OSS is still early in its influence in India. While the outsourcing business of Indian IT

industry is profiting from the new services and integration market provided by OSS,

the domestic market is still immature. The domestic adoption of OSS is also handi

capped by the ready availability of inexpensive, pirated, proprietary software prod

ucts. However, there are signs of increasing use of OSS in government information

processing and provision of services, as well as in educational curricula and in tools

used to create educational content within many knowledge areas.

However, the long-term potential of OSS is recognized by some of the leadership of

India for example, by the current president of India, Dr. APJ Kalam. With contin

ued advocacy, OSS can become a Gold Revolution that powers export as well as

domestic industries across all economic segments and realizes the promise of a

shared knowledge and collaboration-based information society.

196 X OSS in India

XX CHAPTER 13

Boon-Lock Yeo, Louisa Liu,

and Sunil Saxena

When China Dances with OSS

One of the key challenges for China s Information and Communication Technology
(ICT) industry is to ensure that China has the right software solutions to support

usage models and value requirements. The advent of open source software (OSS),

along with its business model with respect to intellectual property and value proposi
tion, brings this business force to the fast-growing software industry in China. That,
in turn, will provide an opportunity for the OSS community to promote and popu
larize this model throughout the People s Republic of China (PRC). This chapter ana

lyzes how OSS has developed in China and where it is heading.

What OSS Was and Is in China

With the Gross Domestic Product (GDP) growing at an average rate of 9.8% year
over year (YoY) from 1979 to 1997,1 China has been pegged as a fast-growing econ

omy. The high-tech industry had become the number-one pillar industry as of

2002, 2 and is expected to contribute 7% to the country s overall growth in 2005.3 All

of this is part of China s tenth Five-Year Plan, with the vision that "information drives

industrialization" and ICT will continue to be a national focus onward.

1
http://www.stats.gov.cn/tjfx/ztfx/xzgwsnxlfxbg/t20020605_21437.htm.

2 http://www.ccw.com.cn/htm/news l/dt/inland/02_9_l 6_1 0.asp and httv://www chinabyte com/
20020327/1603813.shtml.

3
http://www.cll4.net/policy/policyread.asp?artickid=249.

There are many growth opportunities within China s ICT, particularly in software and

services, hardware, and telecommunications. Currently China is experiencing signifi

cant growth and success in hardware and telecommunications, notably with compa

nies like Lenovo4 and Huawei Technologies,
5 which are recognized as global industry

players. The software industry, however, is slower to produce such success stories.

There are three key objectives to consider when examining the future of China s soft

ware industry:

Grow the local independent software vendors (ISVs) who can drive more PRC market success

China currently has many small and medium-sized software companies, 90% of

which employ fewer than 200 people. Today the revenue generated by the Chi

nese software companies competing in the global market is relatively small, with

the most successful local vendors generating approximately $70 million in reve

nue, only 1% of that of their leading global software counterparts.

Grow infrastructure software to take advantage of the specific needs of the PRC market

There is a perceived opportunity to develop specific infrastructure software for the

Chinese market. Currently 85% of the local ISVs fall into the application software

segment. China s software industry is largely reliant on multinational vendors,

which are the predominant suppliers of infrastructure software such as operating

systems.

Continue education on the importance of intellectual property (IP) rights to grow a healthy

software industry

It will be important to continue to educate Chinese enterprises that software and

services are not complementary to purchased hardware. Piracy is perceived by

many organizations as the norm, particularly for popular software and tools.

Sharing of such IP not only negatively impacts the vendor s bottom line, but also

hurts the local software industry, making it difficult for vendors to build capital

with which to compete and innovate. Today more Chinese companies have

begun to develop original content, which means they will think more about ade

quate safeguards for their IP. This is borne out by the increasing number of pat

ents and trademarks that are being filed in the PRC.

Other factors worth considering to improve and grow the domestic software indus

try include:

Minimize piracy by encouragingfair-priced software and services

China s World Trade Organization (WTO) entry means it will need to confront

and contain software piracy. The government has adopted a multipronged

approach targeting piracy to combat the issue of copyright infringement over time.

4 http://wmv.lenovogrp.com/cgi-bin/main.cgi?section=al?out(SSub_section=chair_message

5 hp.7/www.huawei.com/was/wps/portal/. ut/p/.cmd/cs/.ce/7_0_A/.s/7_0_lK4/_th/J_0_6A/_s.7_0_A/

7_0_lJJ/_s. 7_0_A/7_0_1 K4

198 I C When China Dances with OSS

Enhance national security and decrease viruses and hacker attacks when running software

As China works to develop infrastructure software, it will continue to rely on

what is available. To protect national security, China recognizes that it has to

complement the core parts in the value chain of the software industry, as it sees

the direct relationship between the software and hardware industries.

Grow a strong software industry in pursuit of IT industry growth

As software is where the profitability goes in the ICT industry, China needs to

position itself to supply the innovation, new software, support, and usage mod

els which the growing Chinese economy will need. By considering local needs of

the various market sectors and using standards that would allow for interna

tional usage, Chinese software companies can build a home base of customers to

support IT industry growth.

At this time, OSS has entered onto the PRC SW sage.

What OSS Means in China

Picture a generic software stack (Figure 13-1), with levels for the different types of

software, starting from the firmware/basic input/output system (BIOS), all the way to

the applications. OSS traditionally has focused on the operating system (OS) part and

above; Linux has played a key role in the OS layer.

Applications

Operating systems I Drivers 1

Firmware/BIOS

Hardware: CPU/ chipset/ motherboard

Figure 13-1. A generic software stack

The introduction of OSS in China can be attributed to a group of technical enthusi

asts in the early 1990s. It is said that copies of Linux were brought back by Chinese

visiting overseas from the University of Helsinki, UC Berkeley, and MIT, and quickly

spread throughout universities and research institutions such as Tsinghua University

and the University of Science and Technology of China. 6 At that time, computer sci

ence students and professors focused on becoming familiar with the system and

localization.

http://www^nuxforum.net/forum/gshowflat.php?Cat=^Board=linuxtalk& Number=

492466&page=0^iew=collapsed&sb=5& 0=all&fpart=all& vc=l.

What OSS Was and Is in China I C 199

In 1997, OSS was officially recognized by the government with the development of

"Free Software Research and Application Development," a sub-branch of the China

Software Industry Association, along with a wide range of OSS communities, such as

a free software database freesoft.cei.gov.cn and some other bulletin board sys

tems (BBSs), newsgroups, and Linux User Groups (LUGs).

In 1999, the first Chinese Linux company Xteam was founded and delivered to

the industry the first commercial operation of Linux/OSS in China. Consequently a

nascent market started on this initial engagement, which drew the attention of com

petition and keen interest from entrepreneurs.
7 Companies such as Red Flag, China

Software Network Technology Co., Ltd., and BluePoint, as well as multinational ones

such as TurboLinux have since begun activities in China.

Status of OSS in China

Since 1999, China has placed a stronger focus on OSS. There are many different

components in OSS, from infrastructure software like Apache (web server), MySQL
(database), and JBoss (application server), to tool and application software. In China,

many of the efforts and activities have focused on Linux.

As seen in the market, the server side of Linux is relatively established in enterprise

infrastructure, with a healthy growth rate. Increasingly Linux is being deployed for

application servers and backend databases. This has been mainly seen in the financial

services industry (FSI) and telecommunications. Vendors such as TurboLinux and Red

Flag have taken an active part in these segments to grow their corporate revenues.

Since the Linux OS is the most well-used OSS in organizations, enterprises, and govern

ment bodies, a snapshot of China s Linux market is an appropriate way to study the

market potential. Table 13-1 shows the key players in the market in China.

Table 13-1. Linux distributors in China

Type

Table 13-1. Linux distributors in China (continued)

Type Company Background/description Commonality

China Stan

dard Software

Co., Ltd.

(CS2C)

Co-Create

Xteam

Foreign

BluePoint

TurboLinux

China (TLC)

Novell SuSE

Red Hat

MandrakeSoft

Ranks as third Linux distributor in COE and SOE
markets, respectively.

13

Spun off from China National Software and Ser

vice Co., Ltd. (CS&S) in 2003.

Focus on desktop, server, and office products.

Joint entity formed by tens of local IT compa
nies in 2001.

Received investment from Caplnfo in 2003.

Targets Linux desktop and office suite.

First Linux distributor in China.

Listed in Hong Kong Stock Exchange two years
after the company was established.

Transitioned to Linux server from its initial

focus on Linux desktop.
Focused on solutions for government and edu
cation after 2004 investment by Beijing Enter

prises Holdings Ltd., which had a strong gov
ernment background.

Transitioned from a pioneer Linux distributor

to an embedded firewall provider.

Existed as an American company, then

acquired by a Japanese company.
In 2004, local company Hinge Software became
the No. 1 shareholder of TLC,C which made it a

local entity.

Strong in server side, especially in the telecom

munications industry.

After the acquisition of SuSE Linux, Novell,
with over a decade of operations experience in

China, started its new Linux business locally.
Focus on training with local institutions. d

Leading distributor globally.
Commenced operation in China in November
2004.

Plans to invest $ 1 billion for development in

China. e

Ranks as third distributor in the world. f

Government

background.

No government

background.

Presence

in China.

Plans to enter

China.

a Nielse Jiang, "China Linux 2005-2009 Forecast and
Analysis." IDC, Feb. 2005.

b Nielse Jiang, "China Linux 2005-2009 Forecast and
Analysis." IDC, Feb. 2005.

c

http://unvw.smartpartner.com.cn/spl/index/article.phpistoryid~8334.
d
http://tech.ccidnet.com/pub/article/c308_al84083_pl .html.

e
http://wunv.ciweekly.com/ciweekly/inforcenter/A20041123364459.html.

f

http://www.chinabyte.com/homepage/219015092686028800/20050110/1898897.shtml.

What OSS Was and Is in China J J Z01

In China, Linux distributors are broken into two camps: local and foreign.

In the local camp, there are five major distributors. The first three distributors, com

posed of the tier-one groups, make up more than 60% of the market share among

local players. Although they have different characteristics and strengths, all of them

possess certain commonalities i.e., they have government backing, fewer than 200

employees, and revenue coming mainly from government IT purchasing.

As to the rest, the main difference is that they do not have government backing. That

may change the fate of these companies. Some have transitioned to new business,

such as BluePoint. Some have turned to getting government support, thanks to capi

tal infusions, as seen in Xteam. Still, there are some distributors who continue to

fight for a ticket into the tier-one group.

Although there are many indigenous distributors in China, the market potential has

attracted the attention of foreign distributors also. This group of foreign distributors

in China includes almost all the leading global distributors: TurboLinux, Novell/

SuSE, and Red Hat. Some other distributors, such as MandrakeSoft, are also express

ing interest in making inroads into China.

OSS Business Models in China

Many people may wonder how companies make money based on open source prod

ucts. There are different approaches, but one that has a proven track record is related

to the service model i.e., making money mainly in services while selling products

for a reasonable price premium.

Several companies have positioned themselves toward the services business model.

They may compete with each other by providing additional value-add or niche prod

ucts. Open source distributors like Red Hat, SuSE, and Red Flag are clear leaders of

open source Linux and have positioned themselves as services companies. These

companies tend to get service-level agreements for support for the Linux distribu

tions they supply to their customers. They have made their distribution as rich as

possible, validate them on many platforms themselves, and get the help of many plat

forms through their OEM partners.

The other successful business model is proprietary applications above the open

source products that run on top of open source distributions and link only dynami

cally with user-level libraries. Oracle server products, and Office products from King-

soft, are clear examples of products that deliver value above the open source stack.

Other examples include set-top boxes like TiVo,8 and Linux-based cell phones.

These products use Linux as an embedded operating system and provide dedi

cated proprietary services above the stack. These vendors can easily charge for their

8 http://www.ttvo.com.

individual products, as they provide very visible value to end users. These compa
nies clearly use the Linux operating system as the base for their solution stack,

leveraging open source to bring cheaper systems into the marketplace.

In China, both business models are common and advantageous. Red Flag, known as

a services company, distinguishes itself from its competitors by focusing on provid

ing value-add via localization for the PRC market. Other additional value that it pro
vides is management and security solutions not available from other local vendors.

Red Hat, on the other hand, distinguishes itself with a large volume of ISV support
and validated stacks from thousands of ISVs. This value-add may fetch additional

customers, however the core of its business remains as a services company. Another

key factor in favor of Chinese companies is the strong manufacturing base of con

sumer electronics and cell phones leading to opportunities for value-added soft

ware on top of the OSS infrastructure.

SWOT Analysis of OSS in China

We have come up with the strengths, weaknesses, opportunities, and threats

(SWOT) and have done comparisons among China and other geographies with

regard to OSS adoption. In Table 13-2, we summarized the SWOT analysis of OSS,
to further separate factors common with other geographies from those unique to

China. In the sections that follow, we examine strengths and opportunities for OSS
in China.

Table 13-2. SWOT analysis of OSS

Category Shared with other geographies Unique to China

Strengths

Weakness

Free source code.

Strong multinational company
(MNC) support.

Shortage of applications.

Opportunities

Threats

Opportunities to develop value-

added software on top of OSS.

Competition with incumbent soft

ware and infrastructure.

Strong government support.

Lack of localized applications.
Lack of Linux developer talent.

Lack of understanding and participation
in Commons.

Young software industry.

Entrepreneurship skill sets are at an early

stage.

Shortage of successful OSS businesses.

Opportunities in China beyond desktop/
server, such as embedded, cell phones,

set-top boxes, and telecommunications,
all of which are China s strengths.

Software IP [Editor s Note: I would argue
this is NOT unique to China.].

SWOT Analysis of OSS in China X 203

Strengths

The future of OSS in China is bright because of the government s strong support, as

the traits of OSS match well with what China is in pursuit of:

Availability offree source code

This helps develop China s own software products with customized needs and

requirements.

Availability of infrastructure software

Among the OSS, there is a suite of infrastructure software, such as Linux as OS,

Apache as web server, MySQL as database, and JBoss as application servers.

These complement what China currently lacks.

The strategic value proposition of China s developing OSS capabilities includes:

Financial perspective cost

In 2003, government IT spending totaled U.S. $2.8 billion, or RMB 23.1 billion.

Government IT spending is expected to maintain a fast growth rate of around

18% through 2008 in anticipation of the 2008 Beijing Olympics and Expo 2010

Shanghai. By then, total government IT spending is projected to reach U.S. $5. 7

billion, or RMB 47.2 billion. The 2003-2007 CAGR will reach 15.3%.9

The packaged software market was calculated at U.S. $264. 3 million or RMB 3.5 bil

lion, in 2003 and represented 9.5% of overall government IT spending. Along with

the increasing standardization of government application software and government

emphasis on software, especially security and storage software, the packaged soft

ware market will maintain a fairly high CAGR of 21.7% in the next five years and

will eventually reach U.S.$706.3 million or RMB 5.9 billion in 2007.^ That spend

ing may help jump-start the local software industry to be profitable and create a reve

nue stream for OSS.

Security consideration

By allowing access to the source code, OSS-based applications allow organiza

tions to help ensure that the software they use can protect against viruses and

hackers, which are becoming more and more of a concern to a well-functioning

IT capability. While cost is important, security can be more significant. Concern

ing information security, it is imperative to get transparency from the solution

and software products, which is hard to realize from proprietary products. OSS

shows all the source code, which greatly relieves government concern.

9 Enid Du, "China Government Industry Solution 2004-2008 Forecast and Analysis." IDC, Nov.

2004.

10 Enid Du, "China Government Industry Solution 2004-2008 Forecast and Analysis." IDC, Nov.

2004.

204X When China Dances with OSS

Growth opportunities to create a balanced software industry

The infrastructure OSS applications are prominently featured in parts of China s

software industry.

Developing a competitive edge in the software industry

The long-term goal of Chinese government of boosting the domestic software

industry is to realize the transition of China from IT consumer to IT provider. It

wants to play a leading role in the Linux/OSS community, in the hope of being

recognized as one of the global standard makers and enablers.

Policies such as File 18n and File 4 1 12 have been published to support growth of

the local software industry. It is suggested that for IT spending, government agencies
consider support to domestic products/services.

13 If there are no appropriate local

products/services, foreign ones can be considered. As such, certain governmental IT

purchasing projects have favored indigenous vendors.

For example, the Beijing Municipal Government s IT purchasing by the end of 2001 had

approved all six local vendors plus Microsoft, the only foreign vendor in the bidding.
14

The local Linux vendors and ISVs that provide products running on the Linux platform
therefore have been given chances to make inroads into the public sector. That kicked

off the first round of government purchasing of local software vendors.

The execution will be run from the top down from central government to tier-one

government agencies in places like Beijing, Shanghai, and other provinces to tier-

two and tier-three ones.

Apart from the efforts of the government and Linux distributors, multinational ven
dors (MNVs) are another significant force to foster growth. The MNVs include Dell,

HP, IBM, Intel, Sun, and SAP, to name just a few, many of which are the founding
members of OSS communities, such as Open Source Development Labs (OSDL).
Some of the endeavors that these MNVs have made include:

Dell

Back in 1999, Dell started to sell Linux-based servers. It also invested in Red Hat. 15

HP

For details, please see
http://www.hp.com.cn/services/education/edm/itm/0409/17.asp.

1 1
http://wvw.istis.sh.cn/zbcx/zcdhAist.asp7id~ 1 42 1

12
http://it.anhuinews.com/system/2005/OI/07/OOJ098472.shtml.

13
http://vvvmxhinabyte.com/homepage/219001834121986048/200311 15/1 745026.shtml and httpV/
tech.tom.com/JJ2J/J793/200485-lJ5570.html.

14 http://tech.sina.com.en/s/n/200J -J2-3J/97972.shtml.
15

http://wvw.blogchina.com/new/source/source.asp7bid~148.

SWOT Analysis of OSS in China
* *

205

IBM

Since 2000, when IBM invested $1 billion in advertising and R&D on Linux, it

has fully supported Linux with all the offerings.
16

Support has been conducted

from the Linux server side to the desktop. February 2005 has seen IBM make

further commitments to Linux. It plans to spend another $100 million to

develop a Linux version of Lotus Workplace to deploy on a Linux client. 17

Intel

Intel advocates the idea of "platform of choice" i.e., meeting the natural

demand of the market and customers. Through its worldwide programs, Intel

has brought together multiple players with an interest in OSS, including gov

ernment agencies, institutions, and vendors, to collaborate on key projects as

beacon/reference sites, nurture the native demand for cost-effective and high-

performance localized solutions, and drive toward a broader customer base in

a variety of industries with China s self-sustaining OSS ecosystem.

Oracle

Linux is one of the key business focuses at Oracle. It has worked with Red Flag

as well as Asianux. 18

SAP

In addition to supporting Linux on the server side, SAP Labs China has worked

with Red Flag since its establishment. 19

Sun

Sun, as the innovator of Java and OpenOffice.org, has entered into a licensing

and co-development deal with CS2C for its Java Desktop System. By releasing its

StarOffice codebase into OSS together with specific guidance on localization to

support emerging markets in 2000, Sun essentially provisioned the desktop

Linux market. Such movements have helped the local distributors to directly

gain the technological strength and methodologies, and bridge the gap between

Chinese companies and foreign ones.

These efforts have helped contribute to the rapid development of OSS on computer

systems in China, with more boxes sold with more services and hardware (mainly

servers); and with more PCs for market segments such as education. But to China s

software industry, their involvement escalates a healthy growth circle.

Last but not least, the impact of government s strong push has a ripple effect

throughout the whole economy, at different levels.

16 http://www-900Abm.com/cn/servers/eserverninux/news/sumrnarize.shtml.
17 http://www.enet.com.cn/enews/in/orcenter/A200502I8391054.htmi.
18 http://www.!inux/ans.org/nuhe/modules.php?name=News&/i!e=print6

jsid=2160.

19 http.7/www.sapchina.com/china/companypress/press.asp?pressID=2948.

Momentum has built around the ecosystem of Linux/OSS. As previously stated, the

Chinese government has taken the lead in adopting open source products in IT sys

tems. This pattern continues and gradually carries over into hardware, business

applications, and the IT services sectors. Some of the major Chinese hardware manu

facturers, such as Lenovo, have preinstalled Linux in desktop PCs and ISVs, such as

Kingsoft, have provided applications that can run on the Linux platform.

Educational institutions also appear to be rapidly adopting Linux, as do financial ser

vices and telecom companies. Communications and process manufacturing verticals

will likely be the most aggressive adopters, with plans to deploy Linux in two to five

years. As for SMEs, they have also shown signs of moving toward Linux, mainly due
to consideration of total cost of ownership. Some mission-critical applications have

been seen in these verticals.

Another recent trend of OSS effort in China is that of standardization. First is Asianux,
initiated by Red Flag and Japanese Linux vendor Miracle Linux, and created to stan

dardize Linux distribution in Asia. Asianux involved validation of major ISV applica
tions for compatibility. Recently, Korea also joined in the Asianux effort.20 At the same

time, a China-level Linux standardization effort was initiated in 2004 by China Elec

tronics Standardization Institute (CESI). This standardization effort was later aligned
with the Linux Standard Base (LSB) effort of the Free Standards Group (FSG).21

All these efforts and contributions have greatly strengthened the local OSS commu
nity s development, as well as helped government to roll out its Linux/OSS initiatives.

Opportunities

Currently, many OSS efforts and activities are centered on the Linux OS and Linux

applications. Much of the effort is based on driving compatibility with other alterna

tive OS or proprietary software applications. Compatibilities come in various forms,

ranging from file formats, GUIs, user experience, plug-in availability, and so on.

Rampant piracy in the China market means that OSS software is expensive com
pared to pirated incumbent software, which is effectively free and thus cheaper and

better, as OSS is trying to catch up. To convince end users to switch to something
inferior and more expensive can be a very difficult value proposition.

While such attempts will continue from current players leveraging OSS to their advan

tages and strong government support behind the scenes, we believe success can also

come in a different form that of treating OSS as a form of disruptive technology and

leveraging China s current strength to build successes in the software industry.

20 http://www.cnii.com.cn/20040423/ca253202.htm.
2 1

http://www.csip.en/new/so/t/2004/09J 6/1 01 0.htm.

SWOT Analysis of OSS in China
*
C 207

The disruption cannot be based on chasing after the incumbents in a well-established

market. Only when OSS-based software offers unique end-user values unavailable from

alternatives will end-user adoption follow. This conclusion follows from the theories

laid out in The Innovator s Dilemma (Christensen). There are at least two implications:

Impact in niche markets without strong incumbent players. Examples include

the cell phone handset market and the set-top box market. Both are Chinese

strengths.

Impact in existing markets via delivering unique and new end-user values not

currently served by incumbent software solutions.

Let s look at these two sets of opportunities.

The market for embedded software outside the conventional desktop or server

opportunities

China is the world s largest consumer of cell phones and an emerging force in cell phone

handset design and manufacture. With the world transitioning to next-generation cellu

lar and wireless technologies, there are tremendous opportunities for Chinese cell phone

manufacturers to use OSS whether operating systems or applications software or soft

ware tools to build a credible and sustainable cell phone handset business.

Similarly, China is in the forefront of producing consumer electronics devices, rang

ing from DVD players to next-generation digital TVs to set-top boxes. As the world of

entertainment goes digital, such consumer electronics devices will demand more

software, from operating systems to media codecs to GUI software to supporting new

usages such as Personal Video Recording (PVR) capabilities.

The availability of OSS software potentially allows these consumer electronics manufac

turers to more easily create the entire software stack and to build the entire system with

greater ease. The Chinese embedded market players, which are good at producing

high-volume systems at competitive price points, may view OSS as the foundation on

which to add innovative usages and to deliver new business models for this age of digi

tal communication and entertainment. The creators and suppliers of such software

stacks may be ISVs, rather than the system manufacturers themselves.

Delivering innovations and unique end-user values on top of available OSS values not

currently served by the presently available software.

For example, the difficulty entering Chinese characters using alphanumeric key

boards means opportunities to create value-added pen-based or other, better input

methods for Chinese characters. This type of end-user value can be delivered on top

of OSS and can help to offset some of the current shortcomings of the current OSS

offerings.

208
*
C When China Dances with OSS

Another example specific to China is the strong focus on education by Chinese fami

lies and society at large. The opportunities here would be in the form of better learn

ing software for schools and homes and easier-to-manage e-classrooms, the values of

which would be delivered and built on top of already available OSS software stacks.

The preceding two cases present the potential opportunities for OSS as a disruptive

technology when combined with China s strengths and core competencies.

Another opportunity that is also unique to China lies in the intersection of the grow

ing Original Design Manufacturing (ODM) base in China and Chinese Taiwan, and

the recently announced open source implementation of a next-generation BIOS tech

nology code-named Tiano,22 formally known as Intel Platform Innovation Frame

work for Extensible Firmware Interface (EFI).

The open sourced Foundation of Tiano, combined with the standardizations of the

firmware interface via EFI, opened up opportunities for ODM and its partners to

deliver more platform-level values to end users, in particular in areas of manageabil

ity, security, serviceability, and administrative interface, which are otherwise more
difficult to implement in the old BIOS environment. This also represents the first

example of serious OSS effort in the firmware/BIOS layer in the software stack shown
in Figure 13-1.

Where OSS Is Going for China and Beyond

Although the road ahead is full of challenges, the government and end users are

helping to drive OSS adoption and enhancement in China to be a significant compo
nent of the software industry. More importantly, China recognizes the value of help

ing drive OSS to build a healthy and sustainable software industry. It is our belief

that what is needed is to prove OSS can be used to create several successful busi

nesses in China, and to do so soon.

The SWOT analysis of OSS in China presented in this chapter pointed to various sce

narios, mostly happening in parallel. First, strong government support will be a key
force for continued experiments and deployment of OSS in government-related

usages. There will be many attempts to replicate the success of OSS in server envi

ronments and in client environments. The challenge of trying to replace clients

served by strong incumbents with OSS alternatives will remain innovations to

deliver unique end-user values are critical here.

Software piracy will likely continue, but the effort to contain it will strengthen; we
expect the results and impact to be felt over time. China s strong manufacturing
base in computing, communication, and entertainment systems as the world
becomes more digital further present unparalleled opportunities for China to lever

age OSS as a strong base for innovations and to bring more value to end users.

22
http://www.tianocore.org.

Where OSS Is Going for China and Beyond
* *

209

With all this happening, the Linux/OSS talent pool will continue to grow, and

many more developers will make attempts to leverage OSS to create meaningful
business models.

One thing is certain. We expect many changes in the Chinese OSS landscape in the

years ahead. China s policy choices with respect to OSS will have a profound impact on

how China educates its talent pools, how it grows its software industry, and how it

competes in the global arena. A SWOT analysis at the turn of the next decade i.e.,

2010 will most certainly have a very different outcome.

210 * C When China Dances with OSS

if CHAPTER 14

Bruno Souza

How Much Freedom

Do You Want?

"Free as in freedom" has been used many times to express the objectives of Free and

Open Source Software (FOSS). Although the Free Software Foundation (FSF) has

created a very precise definition of what "free" is with respect to software, freedom

itself is one of those difficult things to define and agree on, especially since freedom

always assumes some form of compromise. "Your Freedom cannot be so broad as to

negate someone else s Freedom" is a common saying. And when we talk about free

dom in software, it is normal to have different views on what it is and how it is

achieved.

The notion of free software was born in the United States, from inside the software

development community. Long before the birth of free software, collaboration among
developers from different companies and universities was the norm. Once software

started to be seen as a company asset, barriers were built to protect these assets, and
it became increasingly harder for developers to collaborate on and share code. Better

ways to facilitate and guarantee the necessary collaboration were needed. Free soft

ware, and later open source software, allowed this to happen: across company
boundaries, via the Internet,and between people that didn t even know each other.

Most of the software in the world today is (or was) developed in the United States,

but software development itself is a borderless activity. It happens everywhere. And
although many have tried to apply software development in a repetitive "factory-like"

211

format, it fortunately is still largely a creative activity that favors the best and insight

ful developers no matter where they are.

The Internet has put these developers in touch, connecting people and cultures with

out the same background as the FOSS movement s original history. Also, other ways

of limiting freedom are affecting the ability of governments to reach their sovereignty

and users and companies to decide their own technology future. Now, developers

that believe in freedom in every country are trying to adapt and expand the ideas of

the FOSS movement, to map to their needs and realities, and even to apply them in

their legal systems.

The diversity of collaboration that resulted from FOSS is one of the greatest achieve

ments of developers in the last several years. Discussing how the ideas and philoso

phy are being applied by diverse governments, companies, and cultures will

strengthen freedom for everybody.

Livre Versus Gratis

It is interesting to look at the terms that were used for freedom free and open both

highly overloaded. Many corporations and developers are still confused because "free

software" is not necessarily without cost, and
"open

source software" is not necessar

ily related to open standards or the simple ability to inspect the source code.

Developers in Brazil had an easier time coming up with a term. Livre is the Portu

guese word for free as in freedom, and gratis (from the Latin gratis) is the word for

"no cost." No one doubts that "software livre" is a way to achieve freedom, not sav

ings. Maybe because livre is so obviously a good thing, the idea of software freedom

spread throughout the country, and successfully reached companies, developers, and

especially government policy makers. On the other hand, Portuguese for open

source codigo aberto is much harder to grasp, because it can have different conno

tations. This is reflected in the fact that the vast majority of the Brazilian FOSS move

ment uses the expressions software livre and free software, and much less frequently,

open source, although most people do consider these interchangeable.

But why discuss terms now? Wasn t this debated over and over when the term open

source was coined back in 1998? Haven t we had enough time already to sort them

out and be clear on what we mean? Maybe we have, but that discussion took place in

the developer community, where the terms were defined. Now, we re not talking

only to developers, we re discussing with governments. And companies. And judges,

lawyers, and politicians....But more important than that, we are now discussing more

than free software, we are really discussing livre, liberdade, freedom.

How Much Freedom Do You Want?

Background for Freedom: The Market

Like many countries, Brazil has a tradition of aiming for independence and sover

eignty in strategic markets. This brought excellent results in many areas, from oil

extraction (today Brazil produces almost 100% of the oil it consumes), pharmaceuti-

cals, energy, and also technology. Software development is seen as very strategic; in

fact, the country s domestic development market is larger than India s export mar
ket. Unfavorable currency conversion means that software from outside companies,

priced in dollars or euros, is usually much more expensive than similar solutions

developed in-house or acquired from local companies. Also, because of a unique,

complex tax system, much of the existing commercial software is not suitable to run

in the country. Add this complexity to the low buying capacity of small and medium-
size companies , and you see why Brazil is not favored by international companies as

one of the targets for software customization or translation. For commercial soft

ware, it is common to feature Portugal Portuguese translations over Brazilian Portu

guese translations, even though Portugal has only about 5% of Brazil s population.

The Brazilian government develops large, countrywide solutions, mostly tailored to

the needs of the poor, large, and dispersed population. The sheer size of those sys
tems is enough to make the government the single largest buyer of software and the

focus and target of most software companies, especially infrastructure software ven
dors. Moreover, extremely high inflation existed for many years, having been con
trolled only in the last decade but not before it pushed the banking industry to

invest heavily in technology, putting Brazilian banks among the most technologically
advanced in the world. Because of specific legislation and finance standards, banks
are also some of the largest investors in software development.

For historical reasons, Microsoft and IBM hold strong positions in this market, both in

government and in private companies. Oracle is by far the largest database vendor. Cus
tom software developed to run on those companies platforms is a large legacy, which is

used to justify most large expenditures in software; the result is an effective lock-in that

is extremely hard to break. With the large amount of custom development, what mainly
prevents vendor choice in Brazil are the government custom-developed, single-vendor
solutions. Especially in the 1980s and early 1990s, when the country had rigid policies

disallowing hardware imports, there was huge promotion of software product adoption,

mainly in education. These included incentives either explicit or unofficially hinted
at to use unlicensed copies, and donation of software to universities and schools at all

levels. This created a large legacy of knowledge. Many use only Microsfot Windows and
Office and don t consider any other options. The comparison of this strategy to that of

drug dealers, who offer the first dose for free, was what recently made Microsoft sue a

leading software livre activist.

Background for Freedom: The Market * * 213

Many older PCs still automate supermarkets, bank branches, and public offices and

agencies. Many of those are doing their jobs perfectly running older versions of Win

dows, but Microsoft is pushing for software upgrades and more licensing. The lack of

options has forced many companies to spend their budget on licenses for new OS

versions, and on new computers able to run the new OSes all just to be able to run

the same preexisting applications.

Developing the Software Livre Movement

In this market, dominated by preexisting, international companies, the Brazilian-

organized software livre movement started in the south of the country. Although

there existed some prior activity, the initial work of Mario Teza and Ronaldo Lages

joined users and system administrators interested in the GNU/Linux OS and started

to organize the community. At that time, a discussion about the use of GNU/Linux

was the main objective, but when this initial group was ready to launch its first

event, it decided that it should be more than simply a GNU/Linux event and created

the first FISL Forum Internacional software livre, the International Free Software

Forum effectively launching the software livre discussion in the country.

The moment was a turbulent one. On one side, the Internet shed a new light on the

notion and importance of standards and the real possibility of avoiding lock-in. The

desktop dominance of Microsoft was being heavily questioned first because of the

indisputable reality of security problems with Microsoft products, but also because of

the possibility of multiplatform development raised by new technologies and prod

ucts such as Apache, HTTP, CGI, Java, and HTML. In the middle of this, decisions in

the United States on Internet governance and security technologies made clear, not

only to Brazil but also to the whole world, how much the IT industry was relying on

U.S. -controlled technologies. Microsoft being declared a monopoly and accused of

power abuse, raised questions about how much trust Brazil (or any other country)

should put in a single company, especially for such a strategic market.

Microsoft launched an astonishing campaign against software copying, or
"piracy,"

that backfired by giving a clear demonstration of how important choice is. After

many years of promoting the copying and usage of its software inside universities

and companies, by sponsoring local "software protection" organizations, Microsoft

initiated a fear campaign that included strong TV commercials comparing software

copying with drug dealing and other major crimes. The company also encouraged

police raids on large companies. The campaign was legal and was supported by Bra

zilian antipiracy legislation, but it was an obvious intimidation move. The message

was clear: stop doing what we told you was OK when you were in the university.

Revenue from licensing increased overnight, but the initiative backfired in an unex

pected way. Many of the initial migrations to open source solutions were done for

fear of investigation. Companies and, especially, universities, lacking the budget to

214 X How Much Freedom Do You Want?

suddenly buy hundreds or thousands of very expensive licenses (remember the cur

rency exchange rates), and risking fines up to 3,000 times the license cost for each

unlicensed copy, switched to GNU/Linux and OpenOffice in a matter of days.

These initial migrations were instantly successful. Part of the success stems from the

Internet s inherent cross-platform nature. Furthermore, people were acutely aware of

ongoing security problems with Microsoft products. Add the dependency that most

companies and developers, and even the government, had on systems from these

large corporations and the U.S. v. Microsoft lawsuit. All this came into play around

the same time. The stage was set for the discussion of how dependency on propri

etary software was affecting the Brazilian economy and, especially, its sovereignty.

At about the same time, state governments were using free software products to offer

Internet access to the population. A project called Telecentros, led by Sergio Ama-

deu, the software activist recently sued by Microsoft and one of today s top software

livre advocates in the country, proved that GNU/Linux, OpenOffice, Mozilla, and a

full set of open source products could be easily mastered by the population, even by
people who had no previous contact with computers. The reliability and security of

these systems, the possibility of running on cheaper donated machines, full support
for all users, and essential ease of use made the program a huge success. Three years

later, the balance showed that what was spent implementing software livre in the

Telecentros would have paid for only half as many systems if Microsoft products had
been used. Although the cost savings were significant, the fact that users, the govern
ment, companies, and the country could now see a real choice instead of being
locked in was the main achievement of the initiative.

Freedom is something that every politician understands, so many bought the idea

early on. Walter Pinheiro and Simao Pedro were pioneers on the wave that swept
almost all political parties and a large number of politicians. Software livre reached

the legislation houses, first at state level and then at the federal level. Now the discus

sion has reached the courts, where the laws and decisions taken in favor of software

livre are being questioned by those who oppose it; even open source licenses are

being questioned.

In just a few years, this important discussion has basically surpassed the IT industry,

reaching all levels of society.

We have gone from the simple use of FOSS operating systems to freedom in general,
to patents and intellectual property, Internet governance, international standards,
and relationships. By going further than the simple four liberties of free software, the

discussion reached the music and cultural sectors, promoting the sharing of knowl

edgeall knowledge and today, even the Minister of Culture, the famous singer
Gilberto Gil supports the software livre movement. Not just for free software, but for

freedom of choice and of knowledge sharing.

Developing the Software Livre Movement X 215

Not About Price, but About Choice

Many people see the movement to FOSS as an ideological movement. It probably is.

Every time freedom has been battled for, there has always been some ideology

involved. Different people have always tried to get as much freedom as possible for

their partisans, usually ignoring others views of freedom. Eventually, we get to a

middle ground, where freedom wins not necessarily the myopic view held by the

partisans on each side, but a more compromised freedom that can be held longer.

The main discussion is not about economics, but about choice. For too long there

was no choice but to keep using the software provided by Microsoft. The Internet

opened the possibility of another option, one that proved to be cheaper and more

reliable, and one that guaranteed more flexibility and customization.

So, why not simply move to this new option? If software livre is all that it is claimed

to be, why even in a government where so much uproar has been generated are there

still purchases of new hardware, new licenses, and new versions of the old lock-in

option? There are many reasons. A huge lobby has been set in motion to slow any

adoption of FOSS. Microsoft is not the only one supporting this lobby, but is surely

very active in it.

Microsoft started by giving licenses away or making them a lot cheaper to govern

ments and schools. This is understandable. It reasoned that the issue driving the

growing popularity of software livre was economics, so it tried to be even cheaper

(by avoiding training and migration costs). Then there was some more intimidation.

It is reported that companies which were promoting their plans to migrate to GNU/

Linux and OpenOffice in magazines or events would receive visits or letters from

antipiracy organizations and, eventually, a friendly visit from the police. Some com

panies do not allow employees and consultants to talk about what they are doing

with FOSS, for fear of this antipiracy raid. There are reports from some inspected

companies that officers concentrate only on Windows machines, ignoring GNU/

Linux, Macs, Solaris, and so on. Either these systems and their companies are not

entitled to receive protection, or maybe it is just that somebody else is asking for the

inspection....

Microsoft surely did a lot of talking. Many Microsoft employees have been vocal

about software livre, many times through half-true statements and fear, uncertainty,

and doubt tactics. Microsoft s country manager for Brazil, Emilio Umeoka, even went

so far as to directly criticize Brazil s president, saying that by supporting software

livre he was taking the country in the wrong direction an arrogant comment com

ing from the head representative of a company that was considered guilty in the U.S.,

Europe, and recently Brazil, of hurting competition and governments through its

commercial practices. Recently, even Microsoft s Bill Gates. The intimidations may
have gone too far. At the time the software livre movement in Brazil was promoting

216 X How Much Freedom Do You Want?

the fifth edition of one of the world s largest international FOSS advocate gatherings,

the FISL, Microsoft decided to sue the highest authority of the Brazilian govern
ment s software livre initiative, the president of the National Institute of Technology
(NITI) and one of the originators of the celebrated "Telecentros" project, Sergio Ama-
deu. An important representative of the software livre principles, Sergio has a deep

understanding of the issues and knows that software livre is all about freedom. He
has been promoting a carefully considered and reasonable strategy that aims to give

to the Brazilian government the choice it needs to decide about the country s tech

nology future. By personally suing Sergio Amadeu (or as Microsoft puts it, request

ing explanations in court) for what he has said, Microsoft generated an uproar from

people all over the world. Because of the weak basis of the suit, Sergio simply stood

by what he said and ignored Microsoft s requests for an explanation in court or oth

erwise. Sergio said he will not be intimidated, because he s sure that he s doing the

right thing for the freedom Brazil needs and deserves. Microsoft s actions show that it

doesn t understand what is going on in Brazil. The country is reaching for an option.
And the price of choice is not measured in the number of licenses you get for free.

Software livre is a way to achieve choice.

The huge lobby against software livre does not come only from international ven

dors. Many software companies in Brazil don t understand how they will compete in

the software livre market. They don t understand the business model and don t see

the benefits of Yonchai Bentler s "commons-based peer production" model. It is not

clear how they will compete nationally and internationally by developing free soft

ware. In fact, not only traditional software companies are at a loss: many in the soft

ware livre movement still see any ties with business as "evil" or at least as undesir

able. Even those that understand that the only way for software livre to survive is to

have a strong and viable software ecosystem around freedom are still struggling in

how to create this ecosystem. This has to be addressed by the software livre move
ment, and it is refreshing to see that some of the most influential software livre entre

preneurs are already joining forces to expand their ability to compete and participate
in this market.

Besides the strong lobby, there are other, more important reasons why a faster move
to software livre solutions is hard, even when there s a will.

Choice Requires More Than Free Software

One of the main lock-in problems governments and companies have is the legacy
custom software already in place. Although it is reasonably easy to move your Win
dows users to GNU/Linux and OpenOffice and your web site from IIS to Apache
Web Server, it is a lot harder to move your internal applications from one platform to

the other. And without applications, there s no user adoption, of course.

Choice Requires More Than Free Software X 217

Every internal or custom system that is developed is tied to a specific infrastructure

software product be it an operating system, a database, a messaging or security sys

tem, a file format, or a runtime library, you re locked in. Unless you have this solu

tion available in the system to which you are trying to move, you ll have a hard time

porting or rewriting your software.

As Microsoft, IBM, and Oracle are the dominant players in Brazil, most applications
that are developed are tied into their infrastructure products. Microsoft is the most
obvious target of the software livre movement, since it is the king of the desktop and
it powers many departmental servers where licensing issues are more visible. And
Microsoft is the one that s pressuring for more licensing and more upgrades. It is

really the main bully in the playground. But IBM mainframes, with thousands of leg

acy applications and huge Oracle databases, among all kinds of other systems, fall

under the same reasoning that says choice is better. Being free to move away from

those systems requires that applications are ported, and this takes time.

And once the decision to port the applications has been made, where do you port
them? Is it to another specific (although software livre) OS? Does choosing any soft

ware livre solution promise freedom? Does limiting the decision to any solution that

has a specific FOSS license simplify the question? Should we move to one of the

great FOSS-licensed solutions (database, framework) that in fact has just a single

company and no community behind it? Maybe we should put up some criteria,

based on community side and adoption, that will help in choosing a high-quality
FOSS product to tie our application to?

The fact is that once you choose any one product to port your system to, you re cre

ating ties to it. If this is a software livre product, that can be a big help, but it is not

enough to guarantee your freedom, your choice.

Governments and companies do not get locked into a vendor or a platform simply
because they use closed software, but rather, because they develop their own applica

tions tied to a specific product, be it a free product or a proprietary product. Once all

applications are written to a product, and all data is saved into a product-specific for

mat, to move to another offering (free or proprietary) is a big effort. And the longer the

ties to that product endure, the more difficult it is to move. Vendors drive their custom

ers to stay as much as they can. Although software livre makes you less dependent on a

specific vendor (because you can make your own changes), it does not necessarily keep

you from getting locked into a product....

That s why the best option is to guarantee that developed software be effectively free

of product lock-in: custom applications are based on open standards, and all data is

saved into open formats. That s why many of the most valuable software livre

projects are not simply products. They are open source implementations of open,

218 X How Much Freedom Do You Want?

royalty-free standards. The powerful combination of FOSS implementations based on

open standards is what gives us the choice we need.

The use of open standards that can be implemented as open source is a strong way of

promoting software livre. Once applications are free from specific products and stan

dards, it is possible to replace closed products for the FOSS implementations that

have a real chance to compete and show their technical advantages. Defending soft

ware livre on technical merits is a much stronger argument to governments and com

panies. Keeping custom applications ready to benefit from FOSS implementations of

open standards favors software livre even in the (quite common) case where the

FOSS implementation is still in development.

How Java Technology Can Help

That s where Java technology enters the story. Yes, I know many of you complain
that Java is not FOSS, and so how can it even be cited after so many arguments in

favor of software livre?

Well, Java is as much software livre as HTTP is. Or as PDF is. Or, for that matter, as

C is! That is, none of these technologies is software livre. They are standards. Some
are more open or compatible than others, but all of them are books, pieces of paper,
and web pages. Standards are not software livre. The fact that you have the GNOME
PDF Viewer licensed as GPL does not make PDF software livre. It does not even

make PDF an open standard (it is a royalty-free standard, but it is not open since it s

controlled by, and only by, Adobe). Having GCC as a C compiler does not make C
software livre. It means only that it contains software livre implementation of the

ANSI C standard. In addition, just because they are standards, even standards hav

ing software livre implementations, does not mean they can be modified at will.

Apache HTTP Server is the software livre implementation of the W3C HTTP stan

dard, meaning that although Apache HTTP Server code is legally modifiable, you
cannot modify it at will and still say it is compatible with the W3C-HTTP standard.

Then there s Java. As a standard, defined and controlled by the Java Community Pro

cess (the JCP), the Java standard can now also be implemented royalty free as soft

ware livre (under any FOSS license). Actually, Java is a set of standards. You have

things like the Java 2 Enterprise Edition (J2EE), the Java Virtual Machine (JVM), and
the Java 2 Standard Edition (J2SE) several class libraries defined as separated stan

dards. Even the class file format and the Java language are standards.

Until recently, the JCP rules did not really allow for a software livre implementation
(although many initiatives were being developed). However, this has changed,
thanks to the initial work of Jason Hunter on behalf of the Apache Software Founda
tion and supported by Sun and other JCP members. Since the release in 2002 of the

JCP 2.5 rules, there have been no barriers for compatible software livre implementa-

How Java Technology Can Help *C 219

tions of the many Java specifications. Because of the large number of Java specifica

tions, "Java
needs to be open source" and

"Java
is not free software" are usually

meaningless statements, especially because of the fact that since JCP 2.5, many of

these specs already have a FOSS implementation.

One of the important things that the JCP rules mandate is that every contribution

made to a standard has to be licensed royalty free to anyone implementing the stan

dard. This guarantees that the FOSS community will be able to implement all of Java.

Many standards bodies (ISO and ECMA, for instance) do not mandate this, simply

requiring the infamous Reasonable and Non Discriminatory (RAND) clause that is

not necessarily reasonable for the FOSS community, and as such discriminates

against it. Standards generated by those standards bodies can be, and usually are,

encumbered by patents and RAND agreements, making them, for all practical pur

poses, impossible to implement legally by the FOSS community.

However, because of Java s very broad objectives, the Java standards are hard to

implement. Different from other standards, Java tries to reach the binary compatibil

ity promise: the ability to run your Java binary unmodified on any platform with a

Java runtime. For this even to work, a compatibility test was created to guarantee

that a Java implementation meets the standard s requirements. Technology Compati

bility Kits (TCKs) are provided, requiring implementations to pass these tests to

claim compatibility. Compatibility requirements and the sheer number of libraries

and standards involved, coupled with Sun s quite restrictive licensing in its own pro

prietary implementations have delayed software livre implementations of Java.

This does not mean that initiatives don t exist or that we cannot have a software

livre implementation. It is important to say that many Java standards already have

a software livre implementation: servlets, JSP, JSF, EJB, J2EE, JMS, and JDBC are

among the most important examples. What is missing is the very important under

lying runtime: the complete JVM and the set of J2SE libraries. Many projects do

exist to fill this gap and are under development right now. Several are quite capa

ble of running much of the Java code out there, including some very complex

applications. These implementations are far from perfect, but we re getting there.

Java Provides the Other Side of the Choice

But what does all this have to do with freedom and choice? We saw that software

livre did wonders to provide freedom for developers and to allow developer collabo

ration across the Internet, pushing the whole practice of software development to a

new level. Freedom was well served and well used.

It is understandable that developers need their freedom to expand, explore, and liter

ally change the world. Now we re discussing freedom with not only developers, but

also companies, users, and the government. We saw how these deployers are look-

ing for freedom of choice. They want to be able to choose. They want actually they
need options: the ability to choose different vendors, different implementations,
different software houses, different licensing... in short, to not be locked in.

Going back to the many visions of freedom, the standards community sees freedom

as the possibility to choose freely from multiple vendors, since usage of standards

prevented lock-in. Standards are the way society normally defines its rules we see

this in very different markets, from water distribution to electricity, from TV to tele

communications and this was applied to the software world. There were no explicit

discussions about how developers would collaborate on code; on the contrary, stan

dards usually hide the underlining implementation. And the focus was not on devel

oper freedom: standards are actually restrictions on what a few developers can do, so

a larger group of deployers and users can benefit from choice and option.

The free software movement was looking for freedom for the developer to collabo

rate and create, but more than this, freedom as an ultimate goal a social good.

Quoting the FSF, "for the Free Software movement, non-free software is a social

problem and free software is the solution." The GPL puts all the responsibility in

the hands of the developer, who has all the freedom, and only one very strict and

strong restriction: the copyleft. Once-released code cannot ever be restricted, mak
ing it difficult (although not impossible) for developers to derive commercial bene
fit directly from the code they write. This is a strong compromise that free soft

ware developers accept for the benefit of all developers.

Then the Java community comes along, looking for another type of freedom, one that

would free the developer to run his application on any platform. Actually, the main

goal ofJava was to free the user to run an application on whatever platform he chose,
no matter what the platform the original developer was targeting. That was another

type of freedom altogether, and it had to be based on standards to allow for multiple
vendors. This view puts a restriction on a very narrow group of developers, the ones
that deal with the creation of the runtime. They have to obey strict rules, for the ben
efit of the vast majority of developers, deployers, and users, from all platforms, who
are then free to choose what they want to use and run.

At last the open source movement was formed, and promoted the discussion that

although free software was good, having companies investing in and commercially
benefiting from free software would be even better, proposed a similar but different

view. Seeing freedom in a more practical way, which promotes developer collabora

tion, but they are willing to accept that not all software must be free, not considering
proprietary software a social issue. Open source is referred to as a software develop
ment methodology, having dropped the political manifesto, and making the notion
more usable and acceptable for the commercial market. The open source movement
compromises the ideology and accepts that developers will benefit commercially
from code they did not write, to achieve the benefit of allowing more companies and

Java Provides the Other Side of the Choice J J 221

probably more resources to be applied to the evolution of software. This vision tries

to achieve the much-needed critical mass that made FOSS the success it is today.

Are these freedoms incompatible? They can complement each other in very powerful

ways, but freedom is always a compromise. We usually impose restrictions on a few

to the benefit of a larger group.

Unfortunately, some people like to see things narrowly, creating unsolvable conflicts

among these different freedom-promoting movements. As a Java developer, many times

I have been excluded, ignored, and generally considered an "outsider" of the FOSS

community. Many other Java developers feel the same way. All you need to do is men
tion Java in a FOSS discussion forum, and you ll be flamed. You see a lot of Java bash

ing at FOSS events. At a recent event, one of the main speakers claimed there are no

good open source Java developers. How would developers from the Apache Jakarta

project who have implemented so many great FOSS projects, and so many FOSS

implementations of the Java standards feel about this? What about the developers
who put a lot of effort on the Kaffe VM, the GNU Java Compiler, and the GNU Class-

path? These are all great FOSS software projects highly respected implementations of

the Java standards, done by top-level, committed Java developers.

Even FSF founder Richard Stallman has not proposed prohibiting the use of Java. In

his essay, "Free But Shackled The Java Trap,"
which seems to be misunderstood by

many in the FOSS movement, Stallman actually recommends that developers use the

already available free Java implementations and, more important, that they help

improve them. "We do have free implementations of Java, such as the GNU Java

Compiler and GNU Classpath, but they don t support all the features yet. [...] Fortu

nately, [the Java] specification license does permit releasing an implementation as

free software!...] To keep your Java code safe [...], install a free Java development envi

ronment and use
it," says Stallman.

Stallman is not only very clear on the importance of the free Java implementations, but

he also gives us an important argument. He says, "In the early days of the Free Soft

ware Movement, it was impossible to avoid depending on non-free programs. [...] It was

inevitable that our first programs would initially be hampered by these dependencies,
but we accepted this because our plan included rescuing them

subsequently." This was

a reasonable compromise to make to reach a much more worthy goal. But Stallman

continues: "The situation is different today. We now have powerful free operating sys

tems and many free programming tools. Whatever job you want to do, you can do it

on a free platform; there is no need to accept a non-free dependency even
temporarily."

Although Stallman uses this rhetoric to say that you should stick to the free Java imple

mentations, the effect really depends on who he means by "you."

One of the powerful freedoms that Java brings is platform independence. As we have

already seen, the main roadblock for companies and governments in Brazil to choose

222 * C How Much Freedom Do You Want?

and migrate to the
"powerful free operating systems" is the lock-in of existing legacy

applications. This is a hard problem to crack, since we cannot move the systems until

all needed code is ported. So, until we re able to expend enough effort to migrate all the

existing applications, we have to keep adding to today s Windows system. Since a

simultaneous migration is improbable, we then have to coexist both systems for awhile.

Here is where Java comes to the rescue. Applications can be developed to run on

today s Windows systems, coexisting with any new software livre system that is intro

duced, thus making the eventual complete migration a lot easier. Certainly there are

other technologies that allow you to develop cross-platform applications, but Java is

one of the best options, not only technically but also in terms of available tools,

information, and market penetration. Anecdotal evidence from the open source com

munity on the number of non-Java applications that were developed on GNU/Linux
but can run on Windows shows that platform independence is not that easily

achieved. It is possible, but the large number of Windows-developed Java applica
tions that can run on GNU/Linux is a clear statement that Java makes cross-platform

deployment a much easier task.

There are many corporate and government developers who need to deal with a

migration strategy, who need to start moving from Windows to GNU/Linux, or

maybe to an open source Solaris. Many more are not planning to migrate now, but

would like to have a number of choices in the future. So, if the
"you"

Stallman was

referring to are those developers, they will be better off by accepting a nonfree

dependency temporarily, to get the freedom of platform now provided by Java, and
be able to move to a

"powerful free operating system" when desired or needed. Mov
ing Java software to the free operating systems should be easier, and promoting mul-

tiplatform development and standards for governments and companies is a powerful

strategy to guarantee choice. Minimizing dependencies on software that cannot be

implemented by the FOSS community is a clear road map to allow the migration.

In the meantime, we, the FOSS community, should stop pretending Java does not exist,

and that freedom of platform is not important to users, and make the effort to accept,

use, and finish the free Java implementation and tools, as Richard Stallman suggests.

The existing free Java standards implementations may lack functionality if compared to

the full proprietary ones, but the huge amount of functionality provided is at least com
parable, and in many cases is much better than that offered by other major open source

implemented languages. There s no reason why lots of great software could not be

developed and used on those free Java implementations, but as long as the FOSS lead

ers insist on downplaying the importance of Java, this important free software will be

ignored both by the FOSS community and by the Java community at large.

When the FSF talks about usage of the term free software, it mentions that "to stop
using the word free now would be a mistake; we need more, not less, talk about free

dom." This is an interesting point. Although the FSF has its strong and idealistic view

Java Provides the Other Side of the Choice X 223

on what is software freedom, it is clear that its views of freedom are not the only

important views, and that the freedoms we re talking about are not mutually exclu

sive. They may be different, and not everybody may want all of them, but they can be

explored together. Platform independence is an important, easy-to-grasp freedom,

that can go hand in hand with the notion of free software. The fact that we still don t

have a compatible FOSS Java implementation should not be a reason to stop promot

ing the notion of freedom of platform.

Walking the Path

With such restrictions from the FOSS community, openly discussing Java and soft

ware livre seems to be easier said than done. However, we have a series of successful

examples in Brazil that are helping put some light on the possibilities that Java and

software livre can bring to developers and deployers.

We saw how Brazil has chosen the freedom path and some of the strong reasoning

behind that. One of the pillars of that choice is, without a doubt, software livre: it has

pushed the idea of technology independence to other levels, and has prompted the

whole country to discuss freedom in other related areas, like the Internet, music, and

information sharing. It has also captured all the attention, and many what are now

discussed as a "software livre" initiative, although more related to freedom in general.

Because of this discussion of choice and freedom alongside software livre, other initi

atives are strongly pursued. Standards, for example, receive special attention from

the many government agencies. Serpro, the largest Brazilian federal IT agency, an

organization with thousands of developers working in governmental software, has

declared that one of its main responsibilities is to create, defend, and apply national

standards. Standards are defined and then used to guarantee vendor independence,

and then to allow the inclusion of FOSS solutions if they exist and are stable as a

preferred choice for acquisition.

But even before software livre was ever discussed in Brazil, multiplatform applica

tions became increasingly important in the quest for vendor independence. Microsoft

lock-in was the main catalyst, because lock-in to any vendor is one of the main wor

ries inside companies and the government. Add to that the almost mandatory

requirement that every government s software must support GNU/Linux while still

supporting the huge legacy of Windows systems, usually developed by Windows

developers that had literally a few hours to start generating multiplatform code while

still using their Windows machines....

Because of all this, from the start Java played an important role in guaranteeing free

dom for both the Brazilian government and Brazilian companies. As early as 1996

long before software livre was actually considered a real option anywhere in the

world software companies and the many government development agencies saw in

Java the opportunity to gain freedom from Microsoft lock-in. This was an important

step: for the first time, Brazilian developers were even considering another platform
for software development. The search for independence platform independence in

this case drove widespread adoption of the technology inside the government. The

government-owned Banco do Brasil (Latin America s largest bank), adopted Java in

1997, training more than 800 developers in their first Java training program. This is

an early example of the search for freedom that happened before the OSI (and thus

the open source definition) even existed, and long before any significant discussion

of free software in the country.

Although many try to exclude Java developers from the FOSS movement, in Brazil it

is sometimes hard to separate these two communities. Much of the development in

the country is being done in Java today, including a large percentage of the FOSS

development. Projects like JForum, JBanana, Prevayler, Bossa, eGen, Javali, Genesis,

and Hotwork are just some examples of Java-based Brazilian FOSS projects that are

in use throughout the country.

The early software livre movement was clearly driven by system administrators, secu

rity experts, web designers, social scientists, and politicians. They did one of the

world s most effective pushes for the adoption of software livre and, if it had been

only that, it would already be an impressive and fundamental contribution. How
ever, they did more, and the software livre movement went far beyond the simple

adoption push. They moved the software livre discussion into the country s hearth

and involved politicians, lawyers, judges, social scientists, financing institutions,

entrepreneurs, large- and small-business owners, and the government at large in

short, creating a viable ecosystem for software livre to flourish. Unfortunately, when
it got time to discuss software development, they fell short. The push to use software

livre was so strong that more concern was put into migration and digital inclusion

strategies. Although there were very good FOSS developers and important projects,
software development issues were given little attention initially. This is where the

Brazilian Java community has been focusing its contribution, bringing software

development back into the discussion.

Java is one of the most-used languages in the country and is the only one that is mul-

tiplatform and has strong support in both Windows and in GNU/Linux. So, it is

understandable that most of the development discussion in FOSS happens around

Java. There are many examples. Of the recent open source applications that have
received financing from the Brazilian government, almost all are developed in Java,

many running on top of free Java application servers like Tomcat and JBoss. At FOSS
events in Brazil, it s easy to notice that most of the presentation proposals submitted
that deal with development are Java related. Surprisingly, there s a lot less support
and interest for important FOSS languages such as Perl, PHP, and Python.

Walking the Path JJ 225

Through the history of the software livre movement in Brazil, Java has played an

important part, although at times it has been ignored and downplayed by many.
Here are some other examples:

Direto

Developed as a replacement of Lotus Notes and Exchange, Direto is a web-based

email and collaboration tool that handles calendar, address book, and other

functionality. Developed by Procergs, the IT agency of Rio Grande do Sul

(where FISL is held), Direto runs on GNU/Linux and Tomcat, with lots of other

FOSS solutions. The development was mainly done in Java, and at the time it

was released, it was the first initiative from a government agency to release a free

software product. Because of the work done by one of the most respected free

software developers in the country, Ricardo
"Gandhy"

de Mello (a Java devel

oper), Direto was at some point able to run, with some limitations, on a free Java

runtime. Today it probably would run on today s much better free runtimes if

anyone cared to try. Direto is a strong example of how we can get one freedom,

and then the next.

IRPFJava, the multiplatform income tax report application

For many years, to submit your yearly income tax report (IRPF) electronically,

receive all the benefits of faster tax returns, and easily handle the complex forms,

a Windows machine was needed. As a result, the government received many

complaints from Mac and GNU/Linux users who had to resort to friends or

accountants. This was an example of a government application that forced citi

zens to use a proprietary product. Receita Federal, the agency responsible for

IRPF, rewrote the application to support multiple platforms, specifically GNU/
Linux. IRPFJava became the first federal application targeted for large public

consumption that was focused on supporting GNU/Linux. As expected, the

developers were still using Windows and had no knowledge of GNU/Linux or

the Mac: they relied on Java to support those and the many other OSes that were

used to submit the reports. As another good example that shows the possibility

of freedom in steps, efforts are now underway to use the free Java runtime to run

the application.

Banco do Brasil, Caixa Economica Federal, Dataprev, Datasus, Procergs, and Serpro, to

name but afew

These are public companies and agencies, and are among the largest developers

of software inside the Brazilian government. All use Java heavily to guarantee

vendor independence, and many were doing that long before the software livre

movement took place in the country. Most have chosen to use Java-based FOSS

tools and products because it made commercial and technological sense, and

these projects are promoted today as success cases of software livre adoption. To

show their support for software livre, many of these agencies refer to their use of

226 ^ C How Much Freedom Do You Want?

Java-based products such as Tomcat, JBoss, and Eclipse. In some of these places,

Java-based tools are the only free software development tools being used. This is

a clear sign of the importance of Java in software livre initiatives.

That is not to say that everything related to development that happens in the Brazil

ian software livre movement is necessarily related to Java. Far from it. The fact is that

Java was there from the start, guaranteeing freedom inside the government, even

before the software livre discussion turned mainstream. This should not be ignored

or downplayed. And while most of the world is creating a chasm between Java and

software livre, in Brazil Java is effectively being used as a lever to push software livre

to higher grounds.

What to Do?

It is clear that Java and software livre work together. By combining these different

approaches to freedom, we can have more freedom, not less. But many still feel that

Java is not open source and try to leave Java out of this fundamental discussion, to

the detriment of all.

There are many examples of initiatives to exclude Java as a development tool for

FOSS projects, and even to exclude FOSS Java applications from FOSS events. I

wonder how we can have a FOSS implementation of any standard if there s this kind

of prejudice against standards that were not implemented as FOSS yet. Contrast this

with the amount of effort put into providing drivers and even reverse engineering of

proprietary patented software or protocols to establish links and integrate GNU/

Linux and Windows, for instance. For the FOSS community, the effort to create a

JVM provides a great integration strategy. The more code you write in Java today, the

more you are able to run your applications in both Windows and GNU/Linux sys

tems. Consider also the possibility of running your application on the recently

announced open source Solaris OS, and you have more choice and more freedom.

It s interesting, though, that for the most part, to run a GNU/Linux system you usu

ally have a binary, but closed, standard underneath it: the Intel processor. Java is also

a binary standard, although it normally sits on top of the OS. It is amazing that the

FOSS community can t seem to see how allowing one and excluding the other is like

throwing the baby out with the bath water.

The fact that many applications lots of them under FOSS licenses are written in

Java means that more effort should be spent on having a 100% FOSS Java runtime

available. Many people are working to enable this, but the general prejudice is still

strong in the FOSS community, making it strong in the other direction from the Java

community. These prejudices need to stop, and leaders from both camps need to come

at terms and realize there s much to be gained from the joint pursue of freedom.

What to Do? X 227

We Are Getting There

At a unique and historic meeting at the end of 2004, these two communities started

to come together. Sponsored by Red Hat, the Free Runtime Summit joined compa
nies and developers working toward a FOSS implementation of the J2SE standards,

the last ones in the stack to have a complete open source implementation of Java.

The meeting joined the leaders from the most important free Java projects the GNU

Classpath, the GNU Java Compiler, and the Kaffe VM along with the JCP, the FSF,

the OSI, the Apache Software Foundation, and the Soujava Java Users Group, and

also representatives of several companies. The results of this important gathering are

still to be seen, but it was discussed and agreed to move forward with the efforts of

an implementation of the Java standards that have a FOSS license and that pass the

compatibility tests. The meeting was a major step forward. For the first time, there s

general agreement on the importance and viability of this implementation. This open
collaboration and resolution of prejudices will prove very beneficial to both the Java

and the FOSS communities.

The path Brazil has taken going after freedom in its larger meaning, trying to bring

together standards, multiplatform and software livre, to guarantee freedom of choice

to developers, companies, and the government is showing its viability day by day.

The possibilities are promising, and we re working hard to create the freedom we

need to innovate, to generate technology, and to strengthen our sovereignty. The

Freedom to choose our technological future and to collaborate with the world will be

our reward for the effort. That s the freedom we want, and we ll fight for that.

References

http://www.gnu.org.

http://www.gnu. org/philosophy .

"Why
Free Software is better than Open Source

"; http://www.gnu.org/phtlosophv/

free-software-for-freedom. html.

http://www.osi.org.

http://www.jcp.org.

Richard Stallman, "Free But Shackled The Java Trap"; http://www.gnu.org/

philosophy/Java-trap, html.

228
*
C How Much Freedom Do You Want?

SECTION 2

Beyond Open Source

Collaboration and

Community

Section 2 moves beyond what we traditionally think of as open source and tackles the larger ques

tions of the collaborative pattern, of which open source is but an instance.

We learn in essays by O Reilly and Searls not just how open source is changing the surrounding

technology landscape, but how the dynamics of that changing landscape are putting open source

in a whole new context. Open source must adapt and evolve to continue to be relevant.

Of greater significance than the changes within the technology sector are the other endeavors that

have learned from open source. Any creative enterprise that would benefit from increased collabo

ration can benefit from the lessons of open source. In essays by Jones, Hessel, and Sanger, we

learn about some specific areas where open source principles are actively being applied.

Finally, we conclude with several essays that grapple with the big question of what is the form and

practice of a collaborative community generally. Some of these essays approach the question

using examples of specific communities (Kim; Bates and Stone). Others look not just at specific

communities, but at emergent patterns of cooperation (Shah; Weber). These emerging patterns,

more than any specific technological innovation that open source might yield, are fundamentally

changing the world around us.

b CHAPTER 15

Doc Searls

Making a New World

Open Sources was published in January 1999. That same month 1 became a full-time

editor for Linux Journal, assigned to cover Linux in business. Over the next seven

months, I also co-wrote (with Chris Locke, David Weinberger, and Rick Levine) The

Cluetrain Manifesto, a rant that first took the form of a web site and later took the

form of a book. Its subtitle was "The End of Business as Usual."

Cluetrain, like much of what I wrote for Linux Journal at the time, argued against

bubble-headed marketing at a time when bubble-headed investing in "Linux com

panies" was growing to galactic dimensions. In August 1999, Red Hat had the larg

est IPO run-up in stock market history. In December 1999, VA Linux (now VA
Software) set a new record, which remains unbroken. In January 2000, Cluetrain

hit the bookstores and became a business bestseller. The bubble began to pop on

January 17, and within a few months nearly everybody in a "Linux business"

(including Linux Journal) suffered consequences ranging from dire to fatal. All busi

nesses, including Linux ones, still feel the after-effects.

Yet the bubble was a red herring. It was off-topic in the extreme, because Linux was qui

etly being put to use in businesses everywhere, along with a growing suite of other open
source infrastructural building materials. Linux was never about the stock market, or

even about business. It was about something else something that caused usage (espe

cially in business) to grow regardless of whatever happened among commercial suppliers.

Today the spotlight is on a new set of Linux business leaders: IBM, HP, Novell, Ora

cle, Red Hat, and other large companies. We know they are leaders because they buy

big booth space at LinuxWorld, pay employees to work on Linux code, make good

products, sell to the growing market demand for Linux and open source goods, do

good PR, and get lots of coverage in the press.

No offense, but they re red herrings too. They matter a lot, but they re not what Linux is

about. They re not what open source is about, either, because Linux and open source are

demand-side developments. They are all what the demand side does to supply itself.

Just like the environment where open source took root and grew: the Net.

If designing and building the Internet had been left up to the usual suspects, it never

would have happened. Networking would still be a private affair, a grace of large

vendors, each operating their own separate and barely interoperable networks. For

an example of what that would be like, consider instant messaging. IM is a network

service that never found its way into the Internet suite (unlike, say, hypertext, file

transfer, email, and domain names). The situation for IM is not much different today

than it was back in the 1980s, when "online services" like CompuServe, AOL, and

Prodigy each had their own incompatible email systems. Today Yahoo!, Microsoft,

AOL, and Apple all remain committed to closed proprietary IM systems that run on

the Net, but are not of the Net, meaning they contribute nothing to the Internet s

open, free, shared, and ubiquitous infrastructure. They are
"platforms" supporting

closed silos that trap and hold dependent inhabitants.

The platform and silo system is as old as computing. It s still with us, and won t go away

quickly, if ever. But as a defining model for the software business, it is being replaced by

a growing assortment of open standards and open source tools and building materials

that together support far more business than they replace. Linux and its familiar LAMP

suite (Linux, Apache, MySQL, PHP, Perl, Python, PostgreSQL, etc.) are the most obvi

ous ones. SourceForge lists another 90,000, with dozens more added every day.

Nearly all of these tools and building materials were created by the demand side of

the marketplace, to solve practical problems, and to provide useful infrastructural

support for similar activities. The free and open way they contribute to the world is

good for business. Whole businesses and business categories, old and new, are sited

on bedrock composed of open standards and open source components. Growth hori

zons for these businesses and categories are unobstructed by dependencies on ven

dors and their platforms. Their environment is the wide world of the Net, not the

inside of some vendor s silo. In fact, all platforms and silos in the computer business

now find themselves in a subordinate position to the Net. To survive they have to

operate in the wide new world of the Net.

That goes even for Microsoft, which built the largest and most widely used platforms

and silos in computing history, with a monopoly in the most ubiquitous product cat

egory of all: personal computing.

232X Making a New World

Yet even Microsoft finds its vast monopoly, and all of its platforms and silos, forced

to live in a new and larger world that:

Nobody owns

Everybody can use

Anybody can improve

In "World of Ends" (http://www.worldofends.com), David Weinberger (http://www.

hyperorg.com/blogger) and I initialized those three principles as NEA.

In the first two respects, this virtual world is like our physical one. Except for the patches

of crust we call real estate, nobody owns the Earth or its atmosphere. And everybody can

use the Earth s base infrastructural provisions: gravity, air, and filtered sunlight.

Exceptions can be found, of course. For example, MySQL is owned. Yet, as infra-

structural building material, it doesn t matter whether MySQL is owned or not,

because everybody can use it and anybody can improve it. MySQL s ownership mat

ters only to those that choose to have a commercial relationship with the company.
In that respect, MySQL doesn t behave as a traditional

"platform" vendor, trying to

lock customers and third parties into a dependent role in a private environment.

Instead, it behaves more like a provider of building material for a construction

project. MySQL, like other open source components, is modular stuff. It s made to

work inside a larger context a job, a design, an architecture, whatever where each

component does its job and not much more than that.

The list of open source building materials grows constantly. When I started writing
for Linux Journal, there were a handful of familiar names: Linux, Apache, Sendmail,

and Perl. That grew to become the LAMP suite (where the M represents MySQL and

the P includes PHP and Python). Now the names dropped in a discussion of open
source might also include Tomcat, Squid, Asterisk, JBoss, Eclipse, Jabber, ZeroConf,

RSS, iPodder, or any of the 90,000+ projects on SourceForge alone.

That s because NEA s third principle anybody can improve it gives humans the

power to continue making this new world. Think of this principle as do-it-yourself

geology. We don t just play God here. We get to do His job.

The architecture of this world was first described in 1983 by J.H. Saltzer, D.P. Reed, and
D.D. Clark in End-to-End Arguments in System Design (http://www.hyperorg.com/blog).
Fourteen years later, The Rise of the Stupid Network, by David Isenberg, delivered a death

sentence to the conceits of network centralizers. The Stupid Network was an end-to-end

argument against AT&T s cherished belief in The Intelligent Network. David wrote, "A

powerful leading indicator of the Stupid Network will arrive when entrepreneurs who
have no vested interest in maintaining telephone company assumptions begin to offer

profitable, affordable, widely available data services." A prophesy now fulfilled.

Craig Burton (http://www.craigburton.com) combines both ideas end-to-end and stupid

by describing (http://www.linuxjournal.com/article/4158*) the Internet as a hollow sphere,

composed entirely of ends:

I see the Net as a world we might see as a bubble. A sphere. It s growing larger

and larger, and yet inside, every point in that sphere is visible to every other

one. That s the architecture of a sphere. Nothing stands between any two points.

That s its virtue: it s empty in the middle. The distance between any two points

is functionally zero, and not just because they can see each other, but because

nothing interferes with operation between any two points. There s a word I like

for what s going on here: terraform. It s the verb for creating a world. That s what

we re making here: a new world. Now the question is, what are we going to do

to cause planetary existence? How can we terraform this new world in a way
that works for the world and not just ourselves?

One current example is podcasting. The term first appeared in August 2004. When I

wrote about it in IT Garage (an online sister to Linux Journal) in September 2004, a

search for podcasts brought up 24 results on Google. Now the same search gets

778,000 results. By the time you read this, the number will probably be in the millions.

Podcasts are audio files distributed to subscribers audio players (mostly iPods) via Really

Simple Syndication (RSS), an XML dialect designed to serve as a syndication format for

weblogs. The prime movers behind podcasting are Adam Curry and Dave Winer. Adam

is a veteran broadcast personality (best known as an early MTV VJ) and a serial entrepre

neur. Dave is a programmer, writer, and businessman whose fingerprints are on XML-

PvPC, SOAP, OPML, outlining, Hogging, and other useful innovations, including RSS.

Podcasting grew rapidly after Adam created iPodder (http://ipodder.sourceforge.net), a

script that automatically routes podcast feeds into iPods and other MP3 players, via

computers. As a distribution system for audio (or any kind of media file), iPodder

and its relatives are forming an infrastructural foundation for a whole new industry

one in which anybody can participate. And, by providing a limitless supply of talent,

material, and low-cost any-to-any distribution, podcasting also offers boundless new

opportunities for broadcasting, cable, satellite TV and radio, the record business, and

lots of other industries as well as to noncommercial institutions ranging from

churches and civic organizations to public broadcasting and government.

Note that podcasting became a hot category without the help of a large company.

Instead, it began with the demand side supplying itself.

Now watch for big companies to jump in, and for businesses of all sizes to start mak

ing money. And watch for most of that money to be made because of podcasting s

open standards and open source components, instead of with them.

It will eventually become clear to everybody that far more money is being made because

of open source than with open source. This is what we have to remember every time

234^ Making a New World

somebody asks, "How can you make money with (open source
product)?" The answer

is, "You don t make money with it. You make money because of it."

The because of principle is old hat in mature business categories, but it s new to the

software business. Too many of us still want to see "business models" for all kinds of

goods that don t belong on the income sides of balance sheets. Would you ask your

telephone what its business model is? How about your front porch? Your driveway?
Your clothes? Those things may help us make money; but they are not how we make

money. Well, the same goes for open source products. They are a means to an end.

You make money because o/them, not with them.

It s also easy to forget that the most original sources in this new world are not tech

nologies, but talented and productive human beings. We all know reputation is tre

mendously important in hacker culture, and that open source is required, literally, to

substantiate reputations. It is less obvious that the same is true for every other talent

that operates on the Net. Reputation grows fastest when the goods and services of

creative minds are open to inspection, improvement, adoption, and reuse.

Take the case of English Cut (http://www.englishcut.com), the weblog of Thomas
Mahon, bespoke Saville Row tailor, London. As I write this, Mahon s blog is a cou

ple of weeks old, and he already has a Technorati cosmos (collection of current

inbound links) north of 200 (up from 100 yesterday), which is remarkable (http://

www.technorati.com/cosmos). Thomas Mahon is quickly becoming the most authori

tative Saville Row tailor in the world not because he s a terrific tailor (which he

surely is), but because he also operates in the public marketplace we call the World
Wide Web. There he converses with customers and fellow mavens about fabrics,

drafting, cutting patterns, the trade, and (of course) his advantages over competi
tors. Thomas Mahon runs an open source business. Literally.

Not surprisingly, he has already attracted all the business he can stand. Again,
because of his blog. Not with it.

Thomas was urged into blogging by one of his customers, Hugh MacLeod (http://

www.gapingvoid.com), a cartoonist and professional marketing iconoclast whose blog
is Gapingvoid.com. Hugh took the free ideas delivered by The Cluetrain Manifesto,
and leveraged them into HughTrain (http://www.gapingvoid.com/Moveable_Type/
archives/000823, html) ,

a collection of wisdom that adds substantially to the open
source-savvy marketing canon.

Thomas and Hugh are both referenced in this piece of wisdom (doc.weblogs.com/

discuss/msgReader$5489) from Mike Warot
(bitgrid.biogspot.com), which appeared in

the comments section of my own blog (doc.weblogs.com) this morning:

I think that division of labor and specialization are the ultimate human skill set.

I see the invention of blogs, wikis, and other online communication as the most
recent additions to the toolbox. We re going to increasingly bestow rewards

based on competence (as the Hughtrain and English Cut weblogs have done),

but it won t be a direct reward.

It s going to be especially interesting to watch how the online expression and

validation of trust and competence evolve. Cory Doctorow hinted strongly at

this with the concept of Whuffie. I ve seen, secondhand, how a friend of mine

gets small but pervasive and persistent rewards, for having been the first to engi

neer a simple, open source, file-transfer protocol. There s not big money in it,

but had he tried to make it proprietary, it won t have flown, and something else

would have taken its place. My opinion is he s responsible for enabling a big

chunk of the PC revolution through many tangents.

He invented something, gave it away (purely for the fun of it), and got some

Whuffie in the long run.

Scary thought: we re going to see Whuffie become quantified (and even perhaps

monetized) at some point. We have to plan for that eventuality.

This model will take the place of marketing for companies that are able to

articulate and share their knowledge with others. I particularly find the

English Cut weblog to be fascinating. I ve learned quite a bit about the cul

ture and technology of well-made suits. Should I happen to work my way
into wealth, I might even become a customer. It certainly has increased my
appreciation of the value of a Bespoke. He s adding a lot of value from my
perspective.

Reputation matters. Authority matters. Google (perhaps the world s biggest example of

how to make money because of open source) sorts search results by the PageRank

(http://www.google.com/technology) system, which the company explains in this way:

PageRank relies on the uniquely democratic nature of the Web by using its

vast link structure as an indicator of an individual page s value. In essence,

Google interprets a link from page A to page B as a vote, by page A, for page B.

But, Google looks at more than the sheer volume of votes, or links a page

receives; it also analyzes the page that casts the vote. Votes cast by pages that

are themselves
"important" weigh more heavily and help to make other pages

"important."

That importance is what Cory Doctorow called Whuffie (en.wihipedia.org/wihi/

Whuffie), in his book Down and out in The Magic Kingdom. By whatever name repu

tation, authority, brand value, Whuffie we don t acquire it alone. Its value is

bestowed by others. In fact, the same might be said for its substance.

Several years ago I was talking with Tim O Reilly about the discomfort we both felt

about treating information as a commodity. It seemed to us that information was some-

236,* Making a New World

thing more than, and quite different from, the communicable form of knowledge. It

was not a commodity, exactly, and was insulted by the generality we call "content."
1

Information, we observed, is derived from the verb inform, which is related to the

verb form. To inform is not to "deliver information," but rather, to form the other

party. If you tell me something I didn t know before, I am changed by that. If I

believe you and value what you say, I have granted you authority, meaning I have

given you the right to author what I know. Therefore, we are all authors of each other.

This is a profoundly human condition in any case, but it is an especially important

aspect of the open source value system. By forming each other, as we also form use

ful software, we are making the world, not merely changing it.

Stewart Brand provides a helpful framework for understanding that world, with this

"Layers
of Time" model of civilization, from The Long Now (http://www.Iongnow.org),

as shown in Figure 15-1.

Commerce

Infrastructure

Governance

Culture

Nature

Figure 15-1. Brand s Layers of Time

Look at this as a layered section of surface on Craig Burton s hollow sphere this

"World of Ends" we call the Net.

At the bottom we find the end-to-end nature of the Net. It s also where we find Richard

M. Stallman, the GNU project, the Free Software Foundation (FSF), and hackers whose

I had the same kind of trouble when I first started hearing everything one could communicate
referred to as "content." I was a writer for most of my adult life, and suddenly I was a "content"

provider. This seemed ludicrous to me. No writer was ever motivated by the thought that they
were

"producing content." Their products were articles, books, essays, columns, or (if we
needed to be a bit more general), editorial. "I didn t start hearing about content until the
container business felt threatened," John Perry Barlow said.

interests are anchored in the nature of software, which they understand fundamentally

to be free.

When Richard M. Stallman writes "everyone will be able to obtain good system soft

ware free, just like air," he s operating at the Nature level. He doesn t just believe soft

ware ought to be free; he believes its nature is to be free. The unbending constancy of

his beliefs has anchored free software, and then open source development, since the

1980s. That s when the GNU tools and components, along with the Internet, began
to grow and flourish.

The open source movement, which grew on top of the free software movement, is

most at home one layer up, in Culture. Since Culture supports the Governance, the

open source community devotes a lot of energy and thought to the subject of licens

ing. In fact, the Open Source Initiative (OSI) serves a kind of governance function,

carefully approving open source licenses that fit its definition of open source. While

Richard and the FSF, sitting down there at the Nature level, strongly advocate one

license (the GPL or General Public License), the OSI has approved around 50 of

them. Many of those licenses are authored by commercial entities with an interest in

the governance that supports the infrastructure they put to use.

In fact, it was an interest in supporting business that caused the open source move

ment to break off of the free software movement. That break took place on February 8,

1998, when Eric Raymond wrote "Goodbye, free software
; hello, open source

"

(http://

www. catb.org/%7eesr/open-sourcc.htmr). Here is where the Culture layer can clearly be

seen moving faster, and breaking from, the Nature layer:

After the Netscape announcement broke in January, I did a lot of thinking about

the next phase the serious push to get "free software" accepted in the main

stream corporate world. And I realized we have a serious problem with "free

software" itself.

Specifically, we have a problem with the term "free software" itself, not the con

cept. I ve become convinced that the term has to go.

The problem with it is twofold. First, it s confusing; the term "free" is very

ambiguous (something the Free Software Foundation s propaganda has to wres

tle with constantly). Does "free" mean "no money charged"
or does it mean "free

to be modified by anyone,"
or something else?

Second, the term makes a lot of corporate types nervous. While this does not

intrinsically bother me in the least, we now have a pragmatic interest in convert

ing these people rather than thumbing our noses at them. There s now a chance

that we can make serious gains in the mainstream business world without com

promising our ideals and commitment to technical excellence so it s time to

reposition. We need a new and better label.

238X Making a New World

I brainstormed this with some Silicon Valley fans of Linux (including Larry

Augustin of the Linux International board of directors) the day after my meet

ing with Netscape (Feb. 5th). We kicked around and discarded several alterna

tives, and we came up with a replacement label we all liked:
"open

source."

We suggest that everywhere we as a culture have previously talked about "free

software," the label should be changed to
"open source." Open source software.

The open source model. The open source culture. The Debian Open Source

Guidelines. (In pitching this to the corporate world I m also going to be invok

ing the idea of
"peer

review" a lot.)

And, we should explain publicly the reason for the change. Linus Torvalds has

been saying in "World Domination 101" that the open source culture needs to

make a serious effort to take the desktop and engage the corporate mainstream.

Of course he s right and this re-labeling, as Linus agrees, is part of the pro
cess. It says we re willing to work with and co-opt the market for our own pur

poses, instead of remaining stuck in a marginal, adversarial position.

This re-labeling has since attracted a lot of support (and some opposition) in the

hacker culture. Supporters include Linus himself, John "Maddog" Hall, Larry

Augustin, Bruce Perens of Debian, and Phil Hughes of Linux Journal. Opposers
include Richard Stallman, who initially flirted with the idea but now thinks the

term
"open

source" isn t pure enough.

Bruce Perens has applied to register "open source" as a trademark and hold it

through Software in the Public Interest. The trademark conditions will be

known as the
"Open Source Definition," essentially the same as the Debian Free

Software Guidelines.

It s crunch time, people. The Netscape announcement changes everything. We ve

broken out of the little corner we ve been in for twenty years. We re in a whole
new game now, a bigger and more exciting one and one I think we can win.

Seven years later, victory is all but complete. And not just for open source. While the

free software movement has been, relatively speaking, a drag on the open source

movement, the deep and abiding beliefs and commitments of free software advo
cates have anchored both movements and have helped software identified by both
labels succeed.

Not coincidentally, the Culture on which this new world depends is hacker culture,
about which Eric S. Raymond a founder of the OSI has written extensively (he
edited both editions of The Hacker s Dictionary}. Both he and Bruce Perens, another

leading open source figure, have purposefully advocated open source to business for

many years.

And although open source hackers tend to be more interested in business than free soft

ware hackers, both want Governance and Infrastructure that support business but are

not determined by business except when business works with the hacker community.

Hence OSI s license-approval process. While the number of open source licenses has

been a source of some debate (almost everybody would rather see fewer licenses), it is

important to note that the relationship between these layers is not the issue. The last

thing anybody in the free software or open source movements wants is for anybody at

the Commerce level to reach down into Governance to control or restrict Infrastructure

that everybody relies upon. Even though that s exactly why large companies, and whole

industries, hire lobbyists. More about that issue shortly.

Changing corporate culture to adapt to open source development methods is not

easy. Dan Frye, who runs IBM s Linux development program, recently told me that

IBM has worked hard to make its internal development efforts coordinate smoothly

with Linux s. That way, when IBM "scratches its itches," the kernel patches that

result have a high likelihood of acceptance. IBM has faith that its accepted patches

are ones that are most likely to work for everybody and not just for IBM. This is a

natural and positive way for infrastructure to grow.

And grow it has. The selection of commodity open source building materials is now

so complete that most businesses have no choice but to use those components or,

in many cases, to recognize that IT personnel in their enterprises have been building

their own open source "solutions" for some time.

That realization can come as a shock. Open source infrastructure inside companies

often (perhaps usually it s hard to tell) gets built without IT brass knowing about it.

In many cases, internal open source development and use has had conditional

approval by CIOs and CTOs. Whatever the course of open source growth, at a cer

tain point a threshold is crossed, and companies suddenly know that open source is

no longer the exception, but the rule. The result for IT is often something like "Oh

God! Our sex has changed! What do we wear?"

Several years ago, when I showed the diagram in Figure 15-1 (along with others we ll

visit later) to Rob Glaser, founder and CEO of RealNetworks, he made a remarkable

observation: that the Internet revolution rocked the business world because, for the

first time in history, Infrastructure changed faster than Commerce. "It was like the

rug got pulled out from under everybody," he said.

On the one hand, this caused a great deal of excitement, some of which gassed up the

dot-corn investment bubble. On the other hand, it caused a great deal of fear, some of

which got lobbied into the Digital Millenium Copyright Act (DMCA). In the first case,

commercial interests were enthused by the new Internet infrastructure but failed to

understand its deeper causes and principles. But at least they did no harm to the

Nature, Culture, or Governance that produce and support Infrastructure. Not so with

the entertainment industry and the lawmakers it successfully lobbied for passage of

the DMCA. The DMCA is a prime example of how Commerce can lead Governance to

screw up Infrastructure.

240X Making a New World

The DMCA was intended mostly to protect copyright holders from the ravages of

Nature in a networked world where, as Richard Stallman put it in the GNU Mani

festo (http://www.gnu.org/gnu/mani/esto.html), "Copying all or parts of a program is as

natural to a programmer as breathing, and as productive. It ought to be as free."

While its authors wanted the DMCA to protect their industries by limiting "piracy"

(their word for illegal copying) of copyrighted works, in practice the DMCA has chilled

free speech and scientific research, thwarted "fair use" (an established copyright per

mission), slowed the protected industries adaptation to life in the networked market

place, and crippled or prevented new business categories from emerging.

The case of Internet radio is instructive. The DMCA defined broadcasting on the Net
as

"performance," and digital copies as
"perfect," regardless of their fidelity. It

required "webcasters" to negotiate royalties with the recording industry, through a

Copyright Arbitration Royalty Panel (CARP) administered by the U.S. Copyright
Office. Led by the Recording Industry Association of America (RIAA), the CARP
instituted royalty requirements so labyrinthine, difficult, and costly to webcasters

that it effectively prevented the industry it purported to regulate. Had it been

imposed on over-the-air broadcasting at the dawn of that industry, it would have

strangled that baby in the cradle too.

One unintended consequence is podcasting. Today podcasters are growing in fertile mar
kets that haven t been poisoned by the DMCA. "Podsafe music" (also known as "non-

RIAA" music) is already a staple on podcasts. Once podcasting becomes sufficiently pop
ular (and is perceived by business as something happening below the Fashion layer), look

for the RIAA either to take advantage of it or to force leading new podcasting companies
(or established broadcasting companies) to strike Faustian bargains with them, just so

those companies can play RIAA-licensed music. Whatever happens, the DMCA s market

poisons cripple or prevent far more business than it protects.

The Commerce level is inherently proprietary (you can t have business without prop
erty); but that doesn t need to be a problem for open source, or for anybody. That s

because, in a mature and healthy industry, property claims are limited to each
owner s own property. If you want to build platforms and silos, fine. Just don t

expect to support whole categories, because there are lots of open and free infrastruc-

tural building materials already doing that.

The construction industry provides a good model for where we re going here. There are

plenty of platforms and silos among construction materials and methods. For example,
windows from Andersen, Eagle, and Marvin require their own branded replacement
parts, or parts from

"compatible" manufacturers. But since construction is a mature

industry, with a countless variety of commodity materials made compatible by widely
accepted standards, no one manufacturer can "own" the industry, or even a part of it,

by popularizing a
"platform" on which everybody else is required to build. It would be

absurd to build a house on the "Weyerhaeuser platform" or the
"Georgia-Pacific

platform." Building materials are essentially modular. All your studs, joists, siding, wall-

board, cinder block, roofing, flooring, lighting, and electrical materials are provided by
manufacturers whose proprietary concerns generally don t extend beyond their own

products and the purposes to which they are put.

Open source is a natural quality of most construction. Materials and methods are

open to inspection, and copying. If a builder finds a better way to put up shingles,

hang a door, nail a joist, or pour a foundation, they don t keep it a secret. They share

it, and the knowledge gets passed along from crew to crew.

It s also true that many construction materials are full of patents and other intellectual

property claims. Yet those claims are limited in scope by the modular nature of con

struction standards and practices. For example, you may choose to use proprietary door

latches from one manufacturer throughout your house. Those latches may contain

inventions patented or licensed by the manufacturer. But that manufacturer wouldn t

think of extending those claims to the doors that contain those latches or to the whole

house. To do so would be worse than absurd; it would be self-defeating.

It s not a coincidence that we already talk about software in terms of construction.

We have "architectures," "builds," "designs," tools," "frameworks," "levels," "plat

forms," "components," and "structures." We have "sites" with "addresses and "loca

tions" that are often "under construction."

The similarities between software and construction are so close in some ways that we
can t help making sense of the former in terms of the latter. As cognitive science puts

it, construction is a conceptual metaphor for software development and use. Lately

George Lakoff
(http://www.rocfendgeinstitute.org/people/Ia/20jfjf), the father of cognitive

linguistics, has also done some borrowing from the same source. Instead of talking

about "conceptual metaphors," he now talks about "frames" and
"framing" (http://

vmw.rockridgeinstitute.org/projects/strategic/simplejmming). In Patterns of Software

(Oxford, Paperbacks, 1996), Richard Gabriel says, "Habitability is the characteristic

of source code that enables programmers coming to the code later in its life to under

stand its construction and intentions and to change it comfortably and confidently."

His ideal example is the New England farmhouse:

The result is rambling, but each part is well suited to its needs, each part fits

well with the others... The inhabitants are able to modify their environment

because each part is built according to the familiar patterns of design, use and

construction and because those patterns contain the seeds for piecemeal growth.

Stewart Brand says the same kind of farmhouse is an ideal example of "vernacular"

construction:

What gets passed from building to building via builders and users is informal

and casual and astute. At least it is when the surrounding culture is coherent

enough to embrace generations of experience.

242X Making a New World

Vernacular is a term borrowed since the 1850s by architectural historians from lin

guists, who used it to mean the native language of a region. It means "common" in all

three senses of the word widespread, "ordinary,"
and "beneath notice."

In terms of architecture, vernacular buildings are seen as the opposite of whatever is

"academic," "high style,"
or

"polite."
Vernacular is everything not designed by profes

sional architects in other words, most of the world s buildings. Vernacular building
traditions have the attention span to incorporate generational knowledge about long-
term problems such as maintaining and growing a building over time. High-style
architecture likes to solve old problems in new ways, which is a formula for disaster.

Vernacular buildings evolve. As generations of new buildings imitate the best of

mature buildings, they increase in sophistication while retaining simplicity.

The opposite of vernacular is what Stewart calls
"magazine" architecture: artistic, ide

alized, expensive, and made to impress rather than to operate. Here s another differ

ence, described by Henry Glassie: "If a pleasure-giving function predominates, it is

called art; if a practical function predominates, it is called craft."

It s hard to imagine anything more crafted and practical than a command-line inter

face. That insight comes to us from Neal Stephenson, the novelist and hacker, in his

book In the Beginning Was the Command Line (HarperCollins, 1999). Here s how he

describes the difference between the hacker-built Unix and operating systems archi-

tected in the magazine mode:

The filesystems of Unix machines all have the same general structure. On your

flimsy operating systems, you can create directories (folders) and give them
names like Frodo or My Stuff and put them pretty much anywhere you like. But

under Unix the highest level the root of the filesystem is always designated
with the single character "/" and it always contains the same set of top-level
directories:

/usr

/etc

Nar

/bin

/proc

/boot

/home

/root

/sbin

/dev

/lib

/tmp

SCZ43

And each of these directories typically has its own distinct structure of subdirec

tories. Note the obsessive use of abbreviations and avoidance of capital letters;

this is a system invented by people to whom repetitive stress disorder is what

black lung is to miners. Long names get worn down to three-letter nubbins, like

stones smoothed by a river.

...It is this sort of acculturation that gives Unix hackers their confidence in the

system, and the attitude of calm, unshakable, annoying superiority. . .Windows 95

and Mac OS are products, contrived by engineers in the service of specific compa
nies. Unix, by contrast, is not so much a product as it is a painstakingly compiled

oral history of the hacker subculture.

Is it any surprise that, in the long run (which we ve been in since long before and

after Neal wrote Command Line), hacker culture has pushed up, like lava through

cracks in the Earth, so much useful stuff to build on?

Vernacular construction, with its valuing of craft over art, tends to produce what

Stewart Brand calls "Low Road" buildings. These tend to be "low-visibility, low-rent,

no-style."
He adds, "Most of the world s work is done in Low Road buildings...and

even in rich societies the most inventive creativity, especially youthful creativity, will

be found in Low Road buildings, taking full advantage of the license to try things."

Not coincidentally, Stewart s ideal Low Road building is MIT s late Building 20 (http://

www.eecs.mit.edu/building/20). Known as "The Magical Incubator," Building 20 was

home to countless scientific advances: radar, microwave, spectroscopy, quantum

mechanics, atomic and molecular beams, masers and lasers, atomic clocks, radio astron

omy, linear particle acceleration, magnetron phasing, fiber optics, digital data transmis

sion, and much more. More significant, for the purposes of the open source narrative, is

what Stewart Brand reports here: "The Tech Model Railroad Club on the third floor, E

Wing, was the source in the early 1960s of most of the first generation of computer

hackers who set in motion a series of computer technology revolutions (still in

progress)."

The term hacker is older than Moore s law, older than Unix, older than the whole

software industry. Hacking has also persisted as a comparatively stable culture, while

countless commercial "solutions" and fashions (moving to the top level there) have

come and gone.

The construction industry makes a useful even ideal model for the software

industry as it gradually matures because, while the software industry is a few decades

old at best, construction is mature in the extreme. It might not be the oldest profes

sion in the world, but it s probably the oldest industry. (Just ask the Masons.) It s also

the largest industrial sector, with more than $3.5 trillion in revenues, worldwide. It

understands and respects commodities (there s no fear and trembling about the

"threat of commoditization"). It also finds plenty of ways to differentiate commodity

products and make money with them. It understands the natural advantages and

244X Making a New World

limits of patents and other intellectual property claims. It has lots of giant compa
nies, but none that dominates like Microsoft does in personal computing, or like IBM

used to do in mainframes. Nor does it have many (or any, as far as I know) large

companies that make the 70-90% gross profit margins large companies in the soft

ware industry made in the days when there was no Net, and large vendors had to

make their own infrastructure. (Or, in parlance that becomes more antique by the

day, "be a platform provider".)

In fact, the ideals of modular and commoditized building materials have been around

for a long time. Kim Polese, CEO of SpikeSource (disclosure: Im an advisor to the com

pany), is an industry veteran who labored toward the destinations of open source long
before the means for getting there began to show up. "We tried a lot of good ideas," she

says, "back when suppliers ruled the world: object-oriented programming. C++,

CORBA, COM. Yet even our standards were isolated environments; no less monolithic

than any vendor s silo. Our ideas components, modularity, reusability would have to

wait for an open worldwide ecosystem to
emerge."

So, we should stop and give credit where due to the vendors who worked in the mean
time to build the proprietary infrastructures we call

"platforms."
Before the Net, and

before a sufficient abundance of open source building materials appeared, there was
often no choice. For some activities inside large enterprises, there still isn t much
choice. If you re doing big-time Enterprise Resource Planning (ERP) or Business Pro

cess Management (BPM), there are no open source solutions out there. Still, the same
used to be true of Customer Resource Management (CRM) and office private branch

exchanges (PBXs) to name two among many categories but now that s changing
with SugarCRM (http://www.sugarcrm.com/home) and Asterisk

(http://www.osterisfe.org).

So, the platform and silo system is still with us; it s just moving up the Civilization

stack to the Commerce layer.

Smart software vendors who want to maintain their silos will still have to base them
on free and open source infrastructure. That s what IBM is doing with Linux, which

supports the company s proprietary DB2, Tivoli, and WebSphere products. It s what

Apple did when it moved its whole silo from the decrepit Mac OS to Darwin, which
is Appleized FreeBSD. And it s what Microsoft will do, eventually; but for now, we ll

let that stand as prophesy.

The offerings are often mixed, so it gets hard (or annoying) to say what is open
source and what is not. For example, while Apple contributes generously to the

FreeBSD kernel (as well as to Apache, KDE, GNU, and other open source develop
ment communities), the OS X operating system Apple builds on BSD is highly pro

prietary. So is its popular iTunes software. In fact, iPods, for all their appeal, are

essentially hardware extensions of iTunes software. They are a silo.

It would be a mistake, however, to dismiss Apple as a
"proprietary" company. It is, but it

also is not. Apple has an open source strategy. So do IBM, HP, Oracle, RealNetworks,

Novell, Sun, SAP, and other large vendors that use open source strategies to support

their proprietary offerings. All their strategies are different; but they are all based on an

acceptance of open source as foundational infrastructure, on participation in open
source development projects, and pm an appreciation for what open source provides to

the world.

As long as we insist on treating open source and proprietary as polar opposites, we

won t understand how complementary they can often be. Nor if we are a company

trying to succeed in a business world supported by open source will we be able to

come up with a useful understanding of how open source supports business, much

less a strategy for putting that support to use.

For me, the wisest mind on this whole subject is Craig Burton. I first met Craig back

in the 1980s, when he was one of the leading figures at Novell. As an old communi

cations techie, I watched in amazement how thoroughly the networking vendors

could screw up even a miraculously open standard like Ethernet. Even after IBM s PC

became an industry standard, computer networking was a highly proprietary affair,

in which customers faced baffling choices among local area networks (LANs) with

names like DECnet, WangNet, OmniNet, Sytek, 3Com, Ungermann-Bass, Corvus,

and IBM s Token Ring. There was thin and fat Ethernet, star and bus topologies, and

a mess of noninteroperable standards and implementations, each based on what the

trade called
"pipes

and
protocols." Every vendor s set of pipes and protocols was a

platform supporting a proprietary silo of products and services, sold exclusively to

captive customers. Interoperability was a pie in the sky.

That whole paradigm was blown up when Novell, led by Craig Burton and Judith

Clarke (she later married Craig and became Judith Burton), literally changed the net

working conversation. When I first began to follow Novell, NetWare was a Motorola

68000-based file and print server. Craig brilliantly decided to move NetWare up a

level, to become a Network Operating System (NOS) that worked independently

both of hardware and of network pipes and protocols: essentially, as a networked

filesystem for every PC, regardless of whose network connected those PCs. NetWare

grew like wildfire. In the process, Craig and Novell reconceived networking as a set

of services, and freed it from any notion of lower-level protocol and wiring depen

dency. When Craig, Judith, and Jamie Lewis later founded The Burton Group, their

first achievement was formalizing the "network services model," which prevails to

this day. When I said earlier that 1M was not among the suite of standard Internet

services, I was speaking in terms of that model.

Not long after I started with Linux Journal, I interviewed Craig a number of times,

looking to get his point of view, both on open source and on the prospects for Linux

(http.y/www.searls.com/buron_inten/iew.html). He was greatly in favor of both, but he

also had no patience with some of the rhetoric coming out of open source culture.

246X Making a New World

For example, he took issue with the notion that open source and proprietary art oppo-
sites. "There are collapsed distinctions here," he told me. "The opposite of open is

not proprietary, but closed. The opposite of proprietary is not open, but public

domain." If you "uncollapse"
those distinctions, he said, and lay them out orthogo

nally, you get The Burton Matrix (see Figure 15-2).

Open

Proprietary
Public

domain

Closed

Figure 15-2. The Burton Matrix

Craig said that technical distinctions often collapse around moral sympathies. In the

open source community, for example, "proprietary"
and "closed" are considered bad,

while
"open"

and
"public domain" are considered good (see Figure 15-3).

Open

Proprietary

Bad

Good

Public

domain

Closed

Figure 15-3. Collapsed distinctions

"However," he said, "if you remove morality as an issue, and spread out the two
other distinctions that are collapsed, you have a good strategic framework for busi

nesses to work with." To really take advantage of open source, he explained, you
need to value ubiquity in your marketplace at least as much as you value scarcity in

your product portfolio. In fact, your smartest move may be to take some of the prod
ucts you re selling, and make them ubiquitous by moving them from proprietary/
closed to open/public domain literally, from scarcity to ubiquity (see Figure 15-4).

Open

Proprietary

Ubiquity

Infrastucture

Public

domain

Commoditization

i

i

Scarcity

Closed

Figure 15-4. Ubiquity creates infrastructure

This is a form of commoditization (see Figure 15-5).

Open

Proprietary

Ubiquity

Public

domain

i

i

Scarcity

Closed

Figure 1S-S. The Open Source strategy: commoditize

It s not the only one, of course. Most open source commodities are created from the

start with the intention of putting them in the upper-right quadrant. But for busi

nesses that want to create infrastructure and grow markets, this is one useful open

source strategy. It s one of several a company can practice at the same time.

In IBM s case, the company adopted Linux (helping make it more ubiquitous), while

also open sourcing Eclipse, moving it into the upper-right quadrant.

In Apple s case, the company open sourced nothing of its own, but used one of sev

eral other strategies: creation of a new standard (FireWire), adoption of an existing

standard for the purpose of ubiquitizing it (USB, WiFi, ZeroConf/Rendezvous, MP3),

and appropriation of an already developed codebase to save itself a lot of R&D work

(FreeBSD, KHTML). Meanwhile, Apple has kept QuickTime and its growing portfo

lio of "i" applications on the proprietary side, even while opening them to free usage,

essentially putting those in the upper-left quadrant.

When Tim O Reilly had me show the Burton Matrix to Rob Glaser and Brian Behlendorf

(Apache Foundation leader and founder/CTO of Collabnet), they helped me draw up

248X Making a New World

the diagram shown in Figure 15-6 to explain how they were working together to open
and ubiquitize many of the company s proprietary offerings (while also creating a devel

opment community).

Open

Helix DNA-based apps

Proprietary

Helix source and APIs

GNU tools

Ogg Vorbis

Patents and

other IP

Wi-fi Public

domain

Closed

Figure 15-6. Real s strategy

Real s strategy, Rob said, was to move as much as possible from the lower to the

upper left, and from the upper left to the upper right.

If we put the Burton Matrix beside the Long Now Foundation s
"Layers

of Time" model of

Civilization, we see they have a common element: Infrastructure (see Figure 15-7).

Civilization

Proprietary

Closed

Figure 15-7. Time layers and the Burton Matrix

longnow.org

If we rock the Burton Matrix 45 degrees clockwise, superimpose it over the Civiliza

tion diagram, and cut out all but Infrastructure and Commerce, we have Figure 15-8.

Now we can start to see how the world ought to work (Figure 15-9).

Open source Infrastructure supports Commerce while Commerce contributes to open
source Infrastructure.

We may or may not like what IBM, HP, Google, Apple, Sun, Oracle, Novell, and Red
Hat build on the open source Infrastructure that supports them, but we have to

Proprietary Closed

Commerce

Infrastructure

Open Public

domain

Figure 1S-B. Matrix and layers merged

Proprietary Closed

\ Commerce

Contribute

Open
lnfastructure

Public

domain

Support

Figure 15-9. How it oughta work

respect the fact that all those companies contribute back to that Infrastructure. There

is another word for this form of contribution (see Figure 15-10).

Proprietary Commerce Closed

Open Infrastructure Public

domain

Figure 15-10. Commoditization is contribution

All of these examples, of course, pertain to technology companies. We don t see the

same from Hollywood, which uses technology (including enormous quantities of

Linux), but works against technology s interests, and with it the interests of the new

world technology is busy creating (see Figure 15-11).

Proprietary Commerce Closed

Open Infrastructure Public

domain

Figure 15-11. How Hollywood sees it

250X Making a New World

Unfortunately, there are a few technology companies that feel the same way. The

most notable among these is SCO. Once a leading Unix vendor, SCO transformed

itself into the sworn enemy of Linux and open source, first when it sued IBM, and

later when it sued DaimlerChrysler and AutoZone. Regardless of the merits of SCO s

cases (I think they are groundless, but that s not what matters here), the Fear, Uncer

tainty, and Doubt (FUD) effects have been enormous and undeniable.

It has never been easy to get IT personnel to talk about what they are up to in any

case. It s not their job to speak for the company (that s up to PR and marketing), and

they often don t want their bosses, competitors, or suppliers to know what they re

doing with anything, including open source. But still, some would talk enough so

that editors like me could pull together enough facts to tell a fair story.

That changed with the SCO lawsuits against DaimlerChrysler and AutoZone. These

suits had a highly adrenalizing effect on the legal departments of large companies.

Formerly open channels of communication became tightly closed legal sphincters.

For example, two out the four panelists for my Do-It-Yourself IT (DIY-IT) discussion

at the Open Source Business Conference (OSBC) in April 2004 were no-shows. One

was no mystery: the speaker showed up, but told me he wasn t allowed to speak.

Although he wasn t allowed to give the reason, his expressions made the matter clear:

the company didn t want anybody saying anything in public about Linux or open

source. I didn t learn what happened to the other panelist, Phil Moore of Morgan

Stanley, until later in the year, when he rose out of the audience during a panel dis

cussion at the O Reilly Open Source Convention and spoke bluntly about what was

actually going on. He began:

I work for the 38th largest company in the world, Morgan Stanley. We have a

billion dollar IT budget. And we use a little of everything. Unfortunately. Excuse

me, a LOT of everything. The trend I ve seen in the last 10 years... is the expo

nential growth in the variety and the depth and breadth of installation of open
source software in our infrastructure....What I m seeing is that in the infrastruc

ture, the core infrastructure, open source is going to take over, leaps and

bounds. ...I m predicting, right now, that by 2006 or 2007, we re going to be a

90% Linux shop.

At one point, Phil said, "We re still mostly a Solaris shop, but we are rapidly moving
to Linux, though I m not supposed to talk about that, for fear of being sued by SCO."

Then he turned to Matt Asay (the Novell executive who ran OSBC) and added,

"Which is the reason why I couldn t go to your conference, the OSBC. I wasn t

allowed to
go."

I ran those quotes, with Phil s permission, in my November 2004 column for Linux

Journal. Phil no longer works at Morgan Stanley. He left voluntarily, but the fact that

he s gone still speaks volumes. I want to thank him here for the honesty and courage it

Xzsi

took for him to say what he did. Same goes for ROml Lefkowitz (formerly) of AT&T

Wireless, Roland Smith (formerly) of LSI Logic, Leon Chism of Orbitz, J.P. Ran-

gaswami of Dresdner Kleinwort Wasserstein, and the rest of the handful of executives

in large IT organizations who have talked to me factually and fearlessly about how

open source and Linux especially are being put to good use in their companies.

Meanwhile, with a veil of silence over most IT departments, most of the publications

covering IT are left with what comes easiest: writing about what vendors are doing.

Or worse, treating open source projects as if they were vendors too.
"Microsoft

v.

Linux: Who Will Win?" the headlines say. Again and again.

It s a false fight, and it always has been. We re making a world here. There s a limit to

how well you can live in it and still ignore the fact that it exists. And how it got here.

252X Making a New World

b CHAPTER 16

Tim O Reilly

The Open Source Paradigm Shift

In 1962, Thomas Kuhn published a groundbreaking book titled The Structure of Sci

entific Revolutions. In it, he argued that the progress of science is not gradual, but

rather (much as we now think of biological evolution), a kind of punctuated equilib

rium, with moments of epochal change. When Copernicus explained the move
ments of the planets by postulating that they moved around the sun rather than the

Earth, and when Darwin introduced his ideas about the origin of species, they were

doing more than just building on past discoveries, or explaining new experimental
data. A truly profound scientific breakthrough, Kuhn notes, "is seldom or never just
an increment to what is already known. Its assimilation requires the reconstruction

of prior theory and the re-evaluation of prior fact, an intrinsically revolutionary pro
cess that is seldom completed by a single man and never

overnight."
1

Kuhn referred to these revolutionary processes in science as
"paradigm shifts," a term

that has now entered the language to describe any profound change in our frame of

reference.

Paradigm shifts occur from time to time in business as well as in science. And as with
scientific revolutions, they are often hard fought, and the ideas underlying them not

widely accepted until long after they were first introduced. What s more, they often

have implications that go far beyond the insights of their creators.

1 Thomas Kuhn, The Structure of Scientific Revolutions (http://www.press.uchtcaeo.edu/cei-bin/hfs cei/

00/13220.ctl\ 7.

2*253

One such paradigm shift occurred with the introduction of the standardized architec

ture of the IBM personal computer in 1981. In a huge departure from previous

industry practice, IBM chose to build its computer from off-the-shelf components,

and to open up its design for cloning by other manufacturers. As a result, the IBM

personal computer architecture became the standard, over time displacing not only

other personal computer designs, but also over the next two decades, minicomput

ers and mainframes.

However, the executives at IBM failed to understand the full consequences of their

decision. At the time, IBM s market share in computers far exceeded Microsoft s

dominance of the desktop operating system market today. Software was a small part

of the computer industry, a necessary part of an integrated computer, often bundled

rather than sold separately. Those independent software companies did exist were

clearly satellite to their chosen hardware platform. So, when it came time to provide

an operating system for the new machine, IBM decided to license it from a small

company called Microsoft, giving away the right to resell the software to the small

part of the market that IBM did not control. As cloned personal computers were built

by thousands of manufacturers large and small, IBM lost its leadership in the new

market. Software became the new sun that the industry revolved around; Microsoft,

not IBM, became the most important company in the computer industry.

But that s not the only lesson from this story. In the initial competition for leader

ship of the personal computer market, companies vied to "enhance" the personal

computer standard, adding support for new peripherals, faster buses, and other pro

prietary technical innovations. Their executives, trained in the previous, hardware-

dominated computer industry, acted on the lessons of the old paradigm.

The most intransigent, such as Digital s Ken Olsen, derided the PC as a toy, and

refused to enter the market until too late. But even pioneers like Compaq, whose ini

tial success was driven by the introduction of
"luggable" computers, the ancestor of

today s laptop, were ultimately misled by old lessons that no longer applied in the

new paradigm. It took an outsider, Michael Dell, who began his company selling

mail-order PCs from a college dorm room, to realize that a standardized PC was a

commodity, and that marketplace advantage came not from building a better PC, but

from building one that was good enough, lowering the cost of production by

embracing standards, and seeking advantage in areas such as marketing, distribu

tion, and logistics. In the end, it was Dell, not IBM or Compaq, that became the larg

est PC hardware vendor.

Meanwhile, Intel, another company that made a bold bet on the new commodity

platform, abandoned its memory chip business as indefensible and made a commit

ment to be the more complex brains of the new design. The fact that most of the PCs

built today bear an "Intel Inside" logo reminds us of the fact that even within a com

modity architecture, there are opportunities for proprietary advantage.

254X The Open Source Paradigm Shift

What does all this have to do with open source software, you might ask?

My premise is that free and open source developers are in much the same position

today that IBM was in 1981 when it changed the rules of the computer industry, but

failed to understand the consequences of the change, allowing others to reap the ben

efits. Most existing proprietary software vendors are no better off, playing by the old

rules while the new rules are reshaping the industry around them.

I have a simple test that I use in my talks to see if my audience of computer industry

professionals is thinking with the old paradigm or the new. "How many of you use

Linux?" I ask. Depending on the venue, 20% to 80% of the audience might raise

their hands. "How many of you use
Google?" Every hand in the room goes up. And

the light begins to dawn. Every one of them uses Google s massive complex of

100,000 Linux servers, but they were blinded to the answer by a mindset in which
"the software you use" is defined as the software running on the computer in front of

you. Most of the "killer
apps"

of the Internet, applications used by hundreds of mil

lions of people, run on Linux or FreeBSD. But the operating system, as formerly

defined, is to these applications only a component of a larger system. Their true plat
form is the Internet.

It is in studying these next-generation applications that we can begin to understand

the true long-term significance of the open source paradigm shift.

If open source pioneers are to benefit from the revolution we ve unleashed, we must
look through the foreground elements of the free and open source movements, and
understand more deeply both the causes and the consequences of the revolution.

Artificial intelligence pioneer Ray Kurzweil once said, "I m an inventor. I became
interested in long-term trends because an invention has to make sense in the world
in which it is finished, not the world in which it is started."

2

I find it useful to see open source as an expression of three deep, long-term trends:

The commoditization of software

Network-enabled collaboration

Software customizability (software as a service)

Long-term trends like these "three Cs," rather than the Free Software Manifesto or The

Open Source Definition, should be the lens through which we understand the changes
that are being unleashed.

Ray Kurzweil, Speech at the Foresight Senior Associates Gathering (http:/Avww.feurzvveilai net/

artides/art0465.html?printabk=l\ April 2002.

K x 255

Software as Commodity

In his essay, "Some Implications of Software Commodification," Dave Stutz writes:

The word commodity is used today to represent fodder for industrial processes:

things or substances that are found to be valuable as basic building blocks for

many different purposes. Because of their very general value, they are typically

used in large quantities and in many different ways. Commodities are always

sourced by more than one producer, and consumers may substitute one pro

ducer s product for another s with impunity. Because commodities are fungible

in this way, they are defined by uniform quality standards to which they must

conform. These quality standards help to avoid adulteration, and also facilitate

quick and easy valuation, which in turn fosters productivity gains.

Software commoditization has been driven by standards, in particular by the rise of

communications-oriented systems such as the Internet, which depend on shared pro

tocols, and define the interfaces and datatypes shared between cooperating compo
nents rather than the internals of those components. Such systems necessarily con

sist of replaceable parts. A web server such as Apache or Microsoft s IIS, or browsers

such as Internet Explorer, Netscape Navigator, or Mozilla, are all easily swappable,

because to function, they must implement the HTTP protocol and the HTML data

format. Sendmail can be replaced by Exim or Postfix or Microsoft Exchange because

all must support email exchange protocols such as SMTP, POP, and IMAP. Microsoft

Outlook can easily be replaced by Eudora, or Pine, or Mozilla mail, or a web mail cli

ent such as Yahoo! Mail for the same reason.

(In this regard, it s worth noting that Unix, the system on which Linux is based, also

has a communications-centric architecture. In The Unix Programming Environment,

Kemighan and Pike eloquently describe how Unix programs should be written as

small pieces designed to cooperate in
"pipelines," reading and writing ASCII files

rather than proprietary data formats. Eric Raymond gives a contemporary expression

of this theme in his book, The Art of Unix Programming.)

Note that in a communications-centric environment with standard protocols, both

proprietary and open source software become commodities. Microsoft s Internet

Explorer web browser is just as much a commodity as the open source Apache Web

Server, because both are constrained by the open standards of the Web. (If Microsoft

had managed to gain dominant market share at both ends of the protocol pipeline

between web browser and server, it would be another matter! See "How the Web was

almost won" [http://salon.com/tech/feature/1999/ll/16/microsoft_servers/print.html]
for

my discussion of that subject. This example makes clear one of the important roles

that open source does play in
"keeping

standards honest." This role is being recog

nized by organizations like the W3C, which are increasingly reluctant to endorse

standards that have only proprietary or patent-encumbered implementations.)

256
*
C The Open Source Paradigm Shift

What s more, even software that starts out proprietary eventually becomes standard

ized and ultimately commoditized. Dave Stutz eloquently describes this process in an

essay titled "The Natural History of Software Platforms" (http://www.sjynthesist.net/

writing/so/tware_plat/orms. html) :

It occurs through a hardening of the external shell presented by the platform

over time. As a platform succeeds in the marketplace, its APIs, UI, feature-set,

file formats, and customization interfaces ossify and become more and more dif

ficult to change. (They may, in fact, ossify so far as to literally harden into hard

ware appliances!) The process of ossification makes successful platforms easy

targets for cloners, and cloning is what spells the beginning of the end for plat

form profit margins.

Consistent with this view, the cloning of Microsoft s Windows and Office franchises

has been a major objective of the free and open source communities. In the past,

Microsoft has been successful at rebuffing cloning attempts by continually revising

APIs and file formats, but the writing is on the wall. Ubiquity drives standardization,

and gratuitous innovation in defense of monopoly is rejected by users.

What are some of the implications of software commoditization? One might be

tempted to see only the devaluation of something that was once a locus of enormous
value. Thus, Red Hat founder Bob Young once remarked, "My goal is to shrink the

size of the operating system market." (Red Hat, however, aimed to own a large part
of that smaller market!) Defenders of the status quo, such as Microsoft VP, Jim
Allchin, have made statements such as

"open
source is an intellectual property

destroyer," and paint a bleak picture in which a great industry is destroyed, with

nothing to take its place.

On the surface, Allchin appears to be right. Linux now generates tens of billions of dol

lars in server hardware-related revenues, with the software revenues merely a rounding
error. Despite Linux s emerging dominance in the server market, Red Hat, the largest

Linux distribution company, has annual revenues of only $126 million, versus

Microsoft s $32 billion. A huge amount of software value appears to have vaporized.

But is it value or overhead? Open source advocates like to say they re not destroying
actual value, but rather, are squeezing inefficiencies out of the system. When compe
tition drives down prices, efficiency and average wealth levels go up. Firms unable to

adapt to the new price levels undergo what the economist E.F. Schumpeter called

"creative destruction," but what was "lost" returns manyfold as higher productivity
and new opportunities.

Microsoft benefited, along with consumers, from the last round of "creative destruc

tion" as PC hardware was commoditized. This time around, Microsoft sees the com
moditization of operating systems, databases, web servers and browsers, and related

software as destructive to its core business. But that destruction has created the

Software as Commodity
*
C 257

opportunity for the killer applications of the Internet era: Yahoo!, Google, Amazon,
and eBay to mention only a few are the beneficiaries.

And so I prefer to take the view of Clayton Christensen, the author of The Innovator s

Dilemma and The Innovator s Solution. In a recent article in Harvard Business Review,

he articulates "the law of conservation of attractive
profits"

as follows:

When attractive profits disappear at one stage in the value chain because a prod
uct becomes modular and commoditized, the opportunity to earn attractive

profits with proprietary products will usually emerge at an adjacent stage.
3

We see Christensen s thesis clearly at work in the paradigm shifts I m discussing

here.4 Just as IBM s commoditization of the basic design of the personal computer
led to opportunities for attractive profits "up

the stack" in software, new fortunes are

being made up the stack from the commodity open source software that underlies

the Internet, in a new class of proprietary applications that I have elsewhere referred

to as "infoware" (http://ww\v. oreilly.com/catalog/opensources/book/tim. html).

Sites such as Google, Amazon, and salesforce.com provide the most serious chal

lenge to the traditional understanding of free and open source software. Here are

applications built on top of Linux, but they are fiercely proprietary. What s more,

even when using and modifying software distributed under the most restrictive of

free software licenses, the GPL (http://www.gnu.org/copyleft/gpl.html), these sites are

not constrained by any of its provisions, all of which are conditioned on the old para

digm. The GPL s protections are triggered by the act of software distribution, yet

web-based application vendors never distribute any software: it is simply performed
on the Internet s global stage, delivered as a service rather than as a packaged soft

ware application.

But more importantly, even if these sites gave out their source code, users would not

easily be able to create a full copy of the running application! The application is a

dynamically updated database whose utility comes from its completeness and con

currency and, in many cases, from the network effect of its participating users.

(To be sure, there would be many benefits to users were some of Google s algo

rithms public rather than secret, or Amazon s One-Click available to all, but the

point remains: an instance of all of Google s source code would not give you Google,

unless you were also able to build the capability to crawl and mirror the entire Web
in the same way that Google does.)

3 Clayton Christensen, Harvard Business Review, Feb. 2004 (http://www.tensilica.com/HBR_Jeb_04.pdf).
4 I have been talking and writing about the paradigm shift for years, but until I heard Christensen

speak at the Open Source Business Conference (http://www.osbc2004.com) in March 2004, 1

hadn t heard his eloquent generalization of the economic principles at work in what I d been

calling business paradigm shifts. I am indebted to Christensen and to Dave Stutz, whose recent

writings on software commoditization have enriched my own views on the subject.

258 ^ C The Open Source Paradigm Shift

And the opportunities are not merely up the stack. There are huge proprietary

opportunities hidden inside the system. Christensen notes:

Attractive profits...move elsewhere in the value chain, often to subsystems from

which the modular product is assembled. This is because it is improvements in

the subsystems, rather than the modular product s architecture, that drives the

assembler s ability to move upmarket towards more attractive profit margins.

Hence, the subsystems become decommoditized and attractively profitable.

We saw this pattern in the PC market with most PCs now bearing the brand "Intel

Inside"; the Internet could just as easily be branded "Cisco Inside."

But these "Intel Inside" business opportunities are not always obvious, nor are they

necessarily in proprietary hardware or software. The open source Berkeley Internet

Name Daemon (BIND) package used to run the Domain Name System (DNS) pro
vides an important demonstration.

The business model for most of the Internet s commodity software turned out not to

be selling that software (despite shrinkwrapped offerings from vendors such as Net-

Manage and Spry, now long gone), but in services based on that software. Most of

those businesses the Internet Service Providers (ISPs), who essentially resell access

to the TCP/IP protocol suite and to email and web servers turned out to be low-

margin businesses. There was one notable exception.

BIND is probably the single most mission-critical program on the Internet, yet its

maintainer has scraped by for the past two decades on donations and consulting fees.

Meanwhile, domain name registration an information service based on the soft

ware became a business generating hundreds of millions of dollars a year, a virtual

monopoly for Network Solutions, which was handed the business on government
contract before anyone realized just how valuable it would be. The "Intel Inside"

opportunity of the DNS was not a software opportunity at all, but the service of man

aging the namespace used by the software. By a historical accident, the business

model became separated from the software.

That services based on software would be a dominant business model for open
source software was recognized in The Cathedral &&gt; the Bazaar, Eric Raymond s semi

nal work on the movement. But in practice, most early open source entrepreneurs
focused on services associated with the maintenance and support of the software,

rather than true software as a service. (That is to say, software as a service is not ser

vice in support of software, but software in support of user-facing services!)

Dell gives us a final lesson for today s software industry. Much as the commoditiza-

tion of PC hardware drove down IBM s outsize margins but vastly increased the size

of the market, creating enormous value for users and vast opportunities for a new

ecosystem of computer manufacturers for whom the lower margins of the PC still

Software as Commodity
*
C 259

made business sense, the commoditization of software will actually expand the soft

ware market. And as Christensen notes, in this type of market, the drivers of success

"become speed to market and the ability responsively and conveniently to give cus

tomers exactly what they need, when they need it."
5

Following this logic, I believe that the process of building custom distributions will

emerge as one of the key competitive differentiators among Linux vendors. Much as a

Dell must be an arbitrageur of the various contract manufacturers vying to produce

fungible components at the lowest price, a Linux vendor will need to manage the ever-

changing constellation of software suppliers whose asynchronous product releases pro

vide the raw materials for Linux distributions. Companies like Debian founder Ian

Murdock s Progeny Systems (http://progeny.com) already see this as the heart of their

business, but even old-line Linux vendors such as SuSe and new entrants such as Sun

tout their release engineering expertise as a competitive advantage.
6

But even the most successful of these Linux distribution vendors will never achieve

the revenues or profitability of today s software giants such as Microsoft or Oracle,

unless they leverage some of the other lessons of history. As demonstrated by both

the PC hardware market and the ISP industry (which, as noted earlier, is a service

business built on the commodity protocols and applications of the Internet), com

modity businesses are low margin for most of the players. Unless companies find

value up the stack or through an "Intel Inside" opportunity, they must compete only

through speed and responsiveness, and that s a challenging way to maintain a pric

ing advantage in a commodity market.

Early observers of the commodity nature of Linux, such as Red Hat s founder, Bob

Young, believed that advantage was to be found in building a strong brand. That s

certainly necessary, but it s not sufficient. It s even possible that contract manufactur

ers such as Flextronix, which work behind the scenes as industry suppliers rather

than branded customer-facing entities, may provide a better analogy than Dell for

some Linux vendors.

In conclusion, software itself is no longer the primary locus of value in the computer

industry. The commoditization of software drives value to services enabled by that

software. New business models are required.

Network-Enabled Collaboration

To understand the nature of competitive advantage in the new paradigm, we should

look not to Linux, but to the Internet, which has already shown signs of how the

open source story will play out.

5 Clayton Christensen, Harvard Business Review, Feb. 2004 (http://www. tensilica.com/HBRjeb_04.pdf.

6 From private communications with SuSe CTO, Juergen Geek, and Sun CTO, Greg

Papadopoulos.

260
*
* The Open Source Paradigm Shift

The most common version of the history of free software begins with Richard Stall-

man s ethically motivated 1984 revolt against proprietary software. It is an appealing

story centered on a charismatic figure, and leads straight into a narrative in which the

license he wrote the GPL is the centerpiece. But like most open source advocates,

who tell a broader story about building better software through transparency and

code sharing, I prefer to start the history with the style of software development that

was normal in the early computer industry and academia. Because software was not

seen as the primary source of value, source code was freely shared throughout the

early computer industry.

The Unix software tradition provides a good example. Unix was developed at Bell

Labs, and was shared freely with university software researchers, who contributed

many of the utilities and features we take for granted today. The fact that Unix was

provided under a license that later allowed AT&T to shut down the party when it

decided it wanted to commercialize Unix, leading ultimately to the rise of BSD Unix

and Linux as free alternatives, should not blind us to the fact that the early, collabo

rative development preceded the adoption of an open source licensing model. Open
source licensing began as an attempt to preserve a culture of sharing, and only later

led to an expanded awareness of the value of that sharing.

For the roots of open source in the Unix community, you can look to the research

orientation of many of the original participants. As Bill Joy noted in his keynote at

the O Reilly Open Source Convention in 1999, in science, you share your data so

that other people can reproduce your results. And at Berkeley, he said, we thought of

ourselves as computer scientists. 7

But perhaps even more important was the fragmented nature of the early Unix hard

ware market. With hundreds of competing computer architectures, the only way to

distribute software was as source! No one had access to all the machines to produce
the necessary binaries. (This demonstrates the aptness of another of Christensen s

"laws," the law of conservation of modularity. Because PC hardware was standard

ized and modular, it was possible to concentrate value and uniqueness in software.

But because Unix hardware was unique and proprietary, software had to be made
more open and modular.)

This software source code exchange culture grew from its research beginnings, but it

became the hallmark of a large segment of the software industry because of the rise of

computer networking.

I like to say that software enables speech between humans and computers. It is also the best way
to talk about certain aspects of computer science, just as equations are the best ways to talk
about problems in physics. If you follow this line of reasoning, you realize that many of the

arguments for free speech apply to open source as well. How else do you tell someone how to
talk with their computer other than by sharing the code you used to do so? The benefits of open
source are analogous to the benefits brought by the free flow of ideas through other forms of
information dissemination.

Network-Enabled Collaboration X 261

Much of the role of open source in the development of the Internet is well known:

the most widely used TCP/IP protocol implementation was developed as part of Ber

keley networking; BIND runs the DNS, without which none of the web sites we

depend on would be reachable; Sendmail is the heart of the Internet email back

bone; Apache is the dominant web server; Perl the dominant language for creating

dynamic sites; and so on.

Less often considered is the role of Usenet in mothering the Net we now know.

Much of what drove public adoption of the Internet was in fact Usenet, that vast dis

tributed bulletin board. You
"signed up"

for Usenet by finding a neighbor willing to

give you a newsfeed. This was a true collaborative network, where mail and news

were relayed from one cooperating site to another, often taking days to travel from

one end of the Net to another. Hub sites formed an ad hoc backbone, but everything

was voluntary.

Rick Adams, who created UUnet, which was the first major commercial ISP, was a

free software author (though he never subscribed to any of the free software ideals

it was simply an expedient way to distribute software he wanted to use). He was the

author of B News (at the time the dominant Usenet news server) as well as Serial Line

IP (SLIP), the first implementation of TCP/IP for dial-up lines. But more importantly

for the history of the Net, Rick was also the hostmaster of the world s largest Usenet

hub. He realized that the voluntary Usenet was becoming unworkable and that peo

ple would pay for reliable, well-connected access. UUnet started out as a nonprofit,

and for several years, much more of its business was based on the earlier Unix-Unix

Copy Protocol (UUCP) dial-up network than on TCP/IP. As the Internet caught on,

UUNet and others like it helped bring the Internet to the masses. But at the end of

the day, the commercial Internet industry started out of a need to provide infrastruc

ture for the completely collaborative UUCPnet and Usenet.

The UUCPnet and Usenet were used for email (the first killer app of the Internet),

but also for software distribution and collaborative tech support. When Larry Wall

(later famous as the author of Perl) introduced the patch program in 1984, the pon

derous process of sending around nine-track tapes of source code was replaced by

the transmission of
"patches" editing scripts that update existing source files. Add

in Richard Stallman s GNU C compiler (gcc), and early source code control systems

like RCS (eventually replaced by CVS and now Subversion), and you had a situation

where anyone could share and update free software. The early Usenet was as much a

"Napster"
for shared software as it was a place for conversation.

The mechanisms that the early developers used to spread and support their work

became the basis for a cultural phenomenon that reached far beyond the tech sector.

The heart of that phenomenon was the use of wide area networking technology to con

nect people around interests, rather than through geographical location or company

affiliation. This was the beginning of a massive cultural shift that we re still seeing today.

ZG2 ^
*

The Open Source Paradigm Shift

This cultural shift may have had its first flowering with open source software, but it

is not intrinsically tied to the use of free and open source licenses and philosophies.

In 1999, together with Brian Behlendorf of the Apache project, O Reilly founded a

company called CollabNet to commercialize not the Apache product but the Apache

process. Unlike many other OSS projects, Apache wasn t founded by a single vision

ary developer but by a group of users who d been abandoned by their original "ven

dor" (NCSA) and who agreed to work together to maintain a tool they depended on.

Apache gives us lessons about intentional wide-area collaborative software develop
ment that can be applied even by companies that haven t fully embraced open source

licensing practices. For example, it is possible to apply open source collaborative

principles inside a large company, even without the intention to release the resulting

software to the outside world.

While CollabNet is best known for hosting high-profile, corporate-sponsored, open
source projects like OpenOffice.org (http://www.openoffice.org), its largest customer

is actually HP s printer division, where CollabNet s SourceCast platform is used to

help more than 3,000 internal developers share their code within the corporate
firewall. Other customers use open source-inspired development practices to share

code with their customers or business partners or to manage distributed world

wide development teams.

But an even more compelling story comes from that archetype of proprietary soft

ware, Microsoft. Far too few people know the story of the origin of ASP.NET. As told

to me by its creators, Mark Anders and Scott Guthrie, the two of them wanted to re-

engineer Microsoft s ASP product to make it XML aware. They were told that doing
so would break backward compatibility, and the decision was made to stick with the

old architecture. But when Anders and Guthrie had a month between projects, they
hacked up their vision anyway, just to see where it would go. Others within

Microsoft heard about their work, found it useful, and adopted pieces of it. Some six

or nine months later, they had a call from Bill Gates: "I d like to see your project."

In short, one of Microsoft s flagship products was born as an internal "code fork," the

result of two developers "scratching their own itch," and spread within Microsoft in

much the same way as open source projects spread on the open Internet. It appears that

open source is the "natural
language" of a networked community. Given enough devel

opers and a network to connect them, open source-style development behavior emerges.

If you take the position that open source licensing is a means of encouraging Internet-

enabled collaboration, and focus on the end rather than the means, you ll open a much

larger tent. You ll see the threads that tie together not just traditional open source

projects, but also collaborative
"computing grid" projects like SETI@home (http://

setiathome.ssl.berkdey.edu), user reviews on Amazon.com, technologies like collabora

tive filtering, new ideas about marketing such as those expressed in The Cluetrain Man
ifesto (http://www.cluetrain.com/boofe.html), weblogs, and the way that Internet message

Network-Enabled Collaboration
*
* 263

boards can now move the stock market. What started out as a software development

methodology is increasingly becoming a facet of every field, as network-enabled con

versations become a principal carrier of new ideas.

I m particularly struck by how collaboration is central to the success and differentia

tion of the leading Internet applications.

eBay is an obvious example almost the definition of a "network effects" business

in which competitive advantage is gained from the critical mass of buyers and sell

ers. New entrants into the auction business have a hard time competing, because

there is no reason for either buyers or sellers to go to a second-tier player.

Amazon is perhaps even more interesting. Unlike eBay, whose constellation of prod
ucts is provided by its users and changes dynamically day to day, products identical to

those Amazon sells are available from other vendors. Yet Amazon seems to enjoy an

order-of-magnitude advantage over those other vendors. Why? Perhaps it is merely bet

ter execution, better pricing, better service, and better branding. But one clear differen

tiator is the superior way that Amazon has leveraged its user community.

In my talks, I give a simple demonstration. I do a search for products in one of my
publishing areas, JavaScript. On Amazon.com, the search produces a complex page
with four main areas. On the top is a block showing the three "most

popular" prod
ucts. Down below is a longer search listing that allows the customer to list products

by criteria such as best-selling, highest-rated, by price, or simply alphabetically. On
the right and the left are user-generated "ListMania" lists. These lists allow customers

to share their recommendations for other titles related to the given subject.

The section labeled "most
popular" might not jump out at first, but as a vendor who

sells to Amazon.com, I know that it is the result of a complex, proprietary algorithm that

combines not just sales but also the number and quality of user reviews, user recom

mendations for alternative products, links from ListMania lists, "also
bought"

associa

tions, and all the other things that Amazon refers to as the "flow" around products.

The particular search that I like to demonstrate is usually topped by my own JavaScript:

The Definitive Guide. The book has 192 reviews, averaging 4 l/2 stars. Those reviews are

among the more than 10 million user reviews contributed by Amazon.com customers.

Now contrast that with the #2 player in online books, Barnesandnoble.com. The top

result is a book published by Barnes & Noble itself, and there s no evidence of user-

supplied content. JavaScript: The Definitive Guide has only 18 comments, and the

order-of-magnitude difference in user participation mirrors the order-of-magnitude

difference in sales.

Amazon doesn t have a natural network-effect advantage like eBay, but it has built one

by architecting its site for user participation. Everything from user reviews, to alter

nate product recommendations, to ListMania, to the Associates program that allows

users to earn commissions for recommending books, encourages users to collaborate

264* C The Open Source Paradigm Shift

in enhancing the site. Amazon Web Services, introduced in 2001, takes the story even

further, allowing users to build alternate interfaces and specialized shopping experi

ences (as well as other unexpected applications) using Amazon s data and commerce

engine as a back end.

Amazon s distance from competitors and the security it enjoys as a market leader is

driven by the value added by its users. If, as Eric Raymond said in The Cathedral & the

Bazaar, one of the secrets of open source is
"treating your users as co-developers,"

Amazon has learned this secret. But note that it s completely independent of open
source licensing practices! We start to see that what has been presented as a rigidly

constrained model for open source may consist of a bundle of competencies, not all of

which will always be found together.

Google makes a subtler case for the network-effect story. Google s initial innovation was

the PageRank algorithm, which leverages the collective preferences of web users,

expressed by their hyperlinks to sites, to produce better search results. In Google s case,

the user participation is extrinsic to the company and its product, and so can be copied

by competitors. If this analysis is correct, Google s long-term success will depend on

finding additional ways to leverage user-created value as a key part of its offering. Ser

vices such as orkut (http://www.orhut.com) and Gmail (https://gmailgoogle.com) suggest
that this lesson is not lost on them.

Now consider a counter-example. MapQuest is another pioneer that created an inno

vative type of web application that almost every Internet user relies on. Yet the mar
ket is shared fairly evenly among MapQuest (now owned by AOL), Maps.yahoo.com,
and Maps.msn.com (powered by MapPoint). All three provide a commodity busi

ness powered by standardized software and databases. None of them has made a

concerted effort to leverage user-supplied content, or engage its users in building out

the application. (Note also that all three are enabling an Intel Inside-style opportu

nity for data suppliers such as NAVTEQ, now planning a multibillion-dollar IPO!)

Customizability and Software-as-Service

The last of my three Cs, customizability, is an essential concomitant of software as a

service. It s especially important to highlight this aspect because it illustrates just why
dynamically typed languages like Perl, Python, and PHP, so often denigrated by old-

paradigm software developers as mere
"scripting languages," are so important in

today s software scene.

As I wrote in my 1997 essay "Hardware, Software and Infoware":

If you look at a large web site like Yahoo!, you ll see that behind the scenes, an

army of administrators and programmers are continually rebuilding the prod
uct. Dynamic content isn t just automatically generated, it is also often hand tai

lored, typically using an array of quick and dirty scripting tools.

Customizability and Software-as-Service * C 265

The Architecture of Participation

I ve come to use the phrase the architecture of participation to describe the nature

of systems that are designed for user contribution. Larry Lessig s book, Code and

Other Laws of Cyberspace (http://www.code-is-Iaw.org), which he characterizes as

an extended meditation on Mitch Kapor s maxim, "architecture is
politics,"

made

the case that we need to pay attention to the architecture of systems if we want

to understand their effects.

I immediately thought of Kernighan and Pike s description of the Unix software

tools philosophy (http://tim.oreilly.com/articles/paradigmshift_0504.html). I also

recalled an unpublished portion of the interview we did with Linus Torvalds to cre

ate his essay for the 1998 book, Open Sources (http://www.oreilly.com/catalog/

opensources) . Linus too expressed a sense that architecture may be more important

than source code. "I couldn t do what I did with Linux for Windows, even if I had

the source code. The architecture just wouldn t support it." Too much of the Win

dows source code consists of interdependent, tightly coupled layers for a single

developer to drop in a replacement module.

And of course, the Internet and the World Wide Web have this participatory archi

tecture in spades. As outlined earlier in the section on software commoditization

(http://tim.oreilly.com/articles/paradigmshift_0504.html\ a system designed around

communications protocols is intrinsically designed for participation. Anyone can

create a participating, first-class component.

In addition, the IETF (http://www.ietf.org), the Internet standards process, has a

great many similarities to an open source software project. The only substantial

difference is that the lETF s output is a standards document rather than a code

module. Especially in the early years, anyone could participate simply by joining

a mailing list and having something to say, or by showing up at one of the three

annual face-to-face meetings. Standards were decided by participating individu

als, irrespective of their company affiliations. The very name for proposed Inter

net standards, Request for Comment (RFCs), reflects the participatory design of

the Net. Though commercial participation was welcomed and encouraged, com

panies, like individuals, were expected to compete on the basis of their ideas and

implementations, not their money or disproportional representation. The IETF

approach is where open source and open standards meet.

26B x
*

The Open Source Paradigm Shift

And while there are successful open source projects like Sendmail, which are

largely the creation of a single individual and have a monolithic architecture,

those that have built large development communities have done so because they

have a modular architecture that allows easy participation by independent or

loosely coordinated developers. The use of Perl, for example, exploded along

with CPAN (http://www.cpan.org), the Comprehensive Perl Archive Network, and

Perl s module system, which allowed anyone to enhance the language with spe

cialized functions, and make them available to other users.

The Web, however, took the idea of participation to a new level, because it

opened that participation not just to software developers but to all users of the

system.

It has always baffled and disappointed me that the open source community has

not claimed the Web as one of its greatest success stories. If you asked most end

users, they are most likely to associate the Web with proprietary clients such as

Microsoft s Internet Explorer than with the revolutionary open source architec

ture that made the Web possible. That s a PR failure! Tim Berners-Lee s original

web implementation was not just open source, it was public domain. NCSA s

web server and Mosaic browser were not technically open source, but source was

freely available. While the move of the NCSA team to Netscape sought to take

key parts of the web infrastructure to the proprietary side, and the Microsoft-

Netscape battles made it appear that the Web was primarily a proprietary soft

ware battleground, we should know better. Apache, the phoenix that grew from

the NCSA server, kept the open vision alive, keeping the standards honest, and

not succumbing to proprietary embrace-and-extend strategies.

But even more significantly, HTML, the language of web pages, opened partici

pation to ordinary users, not just software developers. The "View Source" menu

item migrated from Tim Berners-Lee s original browser, to Mosaic, and then on

to Netscape Navigator and even Microsoft s Internet Explorer. Though no one

thinks of HTML as an open source technology, its openness was absolutely key

to the explosive spread of the Web. Barriers to entry for "amateurs" were low,

because anyone could look "over the shoulder" of anyone else producing a web

page. Dynamic content created with interpreted languages continued the trend

toward transparency.

And more germane to my argument here, the fundamental architecture of hyper-

linking ensures that the value of the Web is created by its users.

Customizability and Software-as-Service 267

It s worth noting an observation made by Clay Shirky in a talk at O Reilly s 2001 P2P

and Web Services Conference (http://conferences.oreillynet.com/p2p) (now renamed

the Emerging Technology Conference [http://conferences.oreillynet.com/et2003]),

titled
"Listening

to
Napster." There are three ways to build a large database, said

Clay. The first, demonstrated by Yahoo!, is to pay people to do it. The second,

inspired by lessons from the open source community, is to get volunteers to perform

the same task. The Open Directory Project (http://dmoz.org/about.html~), an open
source Yahoo! competitor, is the result. (Wikipedia [http://en.wikipedia.org/wiki/

Main_Page] provides another example.) But Napster (http://www.napster.com) dem
onstrates a third way. Because Napster set its defaults to automatically share any
music that was downloaded, every user automatically helped to build the value of

the shared database.

This architectural insight may actually be more central to the success of open
source than the more frequently cited appeal to volunteerism. The architectures

of Linux, the Internet, and the World Wide Web are such that users pursuing

their own "selfish" interests build collective value as an automatic byproduct. In

other words, these technologies demonstrate some of the same network effect as

eBay and Napster, simply through the way that they have been designed.

These projects can be seen to have a natural architecture of participation. But as

Amazon demonstrates, by consistent effort (as well as economic incentives such

as the Associates program), it is possible to overlay such an architecture on a sys

tem that would not normally seem to possess it.

"We don t create content at Yahoo! We aggregate it," says Jeffrey Friedl, author of the

book Mastering Regular Expressions and a full-time Perl programmer at Yahoo! "We

have feeds from thousands of sources, each with its own format. We do massive

amounts of feed processing to clean this stuff up or to find out where to put it on

Yahoo!" For example, to link appropriate news stories to tickers at Finance.yahoo.

com, Friedl needed to write a "name recognition" program able to search for more

than 15,000 company names. Perl s ability to analyze free-form text with powerful

regular expressions was what made that possible.

Perl has been referred to as "the duct tape of the Internet," and like duct tape, dynamic

languages like Perl are important to web sites like Yahoo! and Amazon for the same

reason that duct tape is important not just to heating system repairmen but to anyone

who wants to hold together a rapidly changing installation. Go to any lecture or stage

play, and you ll see microphone cords and other wiring held down by duct tape.

We re used to thinking of software as an artifact rather than a process. And to be sure,

even in the new paradigm, there are software artifacts, programs, and commodity

268 \ C The Open Source Paradigm Shift

components that must be engineered to exacting specifications because they will be

used again and again. But it is in the area of software that is not commoditized, the

"glue"
that ties together components, the scripts for managing data and machines, and

all the areas that need frequent change or rapid prototyping, that dynamic languages

shine.

Sites like Google, Amazon, and eBay especially those reflecting the dynamic of user

participation are not just products, they are processes.

I like to tell people the story of the Mechanical Turk, a 1770 hoax that pretended to be

a mechanical chess-playing machine. The secret, of course, was that a man was hidden

inside. The Turk actually played a small role in the history of computing. When

Charles Babbage played against the Turk in 1820 (and lost), he saw through the hoax,

but was moved to wonder whether a true computing machine would be possible.

Now, in an ironic circle, applications once more have people hidden inside them.

Take a copy of Microsoft Word and a compatible computer, and it will still run 10

years from now. But without the constant crawls to keep the search engine fresh, the

constant product updates at an Amazon or eBay, the administrators who keep it all

running, the editors and designers who integrate vendor- and user-supplied content

into the interface, and in the case of some sites, even the warehouse staff who deliver

the products, the Internet-era application no longer performs its function.

This is truly not the software business as it was even a decade ago. Of course, there

have always been enterprise software businesses with this characteristic. (American

Airlines Sabre reservations system is an obvious example.) But only now have they

become the dominant paradigm for new computer-related businesses.

The first generation of any new technology is typically seen as an extension to the

previous generations. And so, through the 1990s, most people experienced the Inter

net as an extension or add-on to the personal computer. Email and web browsing
were powerful add-ons, to be sure, and they gave added impetus to a personal com

puter industry that was running out of steam.

(Open source advocates can take ironic note of the fact that many of the most important

features of Microsoft s new operating system releases since Windows 95 have been

designed to emulate Internet functionality originally created by open source developers.)

But now, we re starting to see the shape of a very different future. Napster brought us

peer-to-peer file sharing, Seti@home introduced millions of people to the idea of dis

tributed computation, and now web services are starting to make even huge data

base-backed sites like Amazon and Google appear to act like components of an even

larger system. Vendors such as IBM and HP bandy about phrases like computing on

demand and pervasive computing.

The boundaries between cell phones, wirelessly connected laptops, and even con

sumer devices like the iPod and TiVO are all blurring. Each now gets a large part of its

Customizability and Software-as-Service C 263

value from software that resides elsewhere. Dave Stutz characterizes this as software

above the level of a single device (http://www.s3/nthesist.net/wnting/onleavingms.html).
8

Building the Internet Operating System

I like to say that we re entering the stage where we will treat the Internet as if it were a

single virtual computer. To do that, we need to create an Internet operating system.

The large question before us is this: what kind of operating system is it going to be?

The lesson of Microsoft is that if you leverage insight into a new paradigm, you will

find the secret that will give you control over the industry, the "one ring to rule them

all," so to speak. Contender after contender has set out to dethrone Microsoft and

take that ring, only to fail. But the lesson of open source and the Internet is that we

can build an operating system that is designed from the ground up as "small pieces

loosely joined,"
with an architecture that makes it easy for anyone to participate in

building the value of the system.

The values of the free and open source community are an important part of its para

digm. Just as the Copernican revolution was part of a broader social revolution that

turned society away from hierarchy and received knowledge, and instead sparked a

spirit of inquiry and knowledge sharing, open source is part of a communications

revolution designed to maximize the free sharing of ideas expressed in code.

But free software advocates go too far when they eschew any limits on sharing, and

define the movement by adherence to a restrictive set of software licensing practices.

The open source movement has made a concerted effort to be more inclusive. Eric

Raymond describes The Open Source Definition (http://www.opensource.org/docs/

de/initton.php) as a "provocation to thought," a "social contract...and an invitation to

join the network of those who adhere to it."
9 But even though the open source move

ment is much more business friendly and supports the right of developers to choose

nonfree licenses, it still uses the presence of software licenses that enforce sharing as

its litmus test.

The lessons of previous paradigm shifts show us a subtler and more powerful story

than one that merely pits a gift culture against a monetary culture, and a community
of sharers versus those who choose not to participate. Instead, we see a dynamic

migration of value, in which things that were once kept for private advantage are

Dave Stutz notes (in a private email response to an early draft of this piece), this software

"includes not only what I call collective software that is aware of groups and individuals, but

also software that is customized to its location on the network, and also software that is

customized to a device or a virtualized hosting environment. These additional types of

customization lead away from shrinkwrap software that runs on a single PC or PDA/

smartphone and toward personalized software that runs on the network and is delivered via

many devices simultaneously."

From a private email response from Eric Raymond to an earlier draft of this paper.

270 X The Open Source Paradigm Shift

now shared freely, and things that were once thought incidental become the locus of

enormous value. It s easy for free and open source advocates to see this dynamic as a

fall from grace, a hoarding of value that should be shared with all. But a historical

view tells us that the commoditization of older technologies and the crystallization of

value in new technologies is part of a process that advances the industry and creates

more value for all. What is essential is to find a balance, in which we as an industry

create more value than we capture as individual participants, enriching the com

mons that allows for further development by others.

I cannot say where things are going to end. But as Alan Kay once said, "The best way
to predict the future is to invent it."

10 Where we go next is up to all of us.

Conclusion

The Open Source Definition and works such as The Cathedral & the Bazaar tried to

codify the fundamental principles of open source.

But as Kuhn notes, speaking of scientific pioneers who opened new fields of study:

Their achievement was sufficiently unprecedented to attract an enduring group
of adherents away from competing modes of scientific activity. Simultaneously,

it was sufficiently open ended to leave all sorts of problems for the redefined

group of practitioners to resolve. Achievements that share these two characteris

tics, I shall refer to as
"paradigms."

11

In short, if it is sufficiently robust an innovation to qualify as a new paradigm, the

open source story is far from over, and its lessons far from completely understood.

Instead of thinking of open source only as a set of software licenses and associated

software development practices, we do better to think of it as a field of scientific and

economic inquiry, one with many historical precedents, and part of a broader social

and economic story. We must understand the impact of such factors as standards

and their effect on commoditization, system architecture and network effects, and

the development practices associated with software as a service. We must study these

factors when they appear in proprietary software as well as when they appear in tra

ditional open source projects. We must understand the ways in which the means by
which software is deployed change the way in which it is created and used. We must
also see how the same principles that led to early source code sharing may impact
other fields of collaborative activity. Only when we stop measuring open source by
what activities are excluded from the definition, and begin to study its fellow travel

ers on the road to the future, will we understand its true impact and be fully pre

pared to embrace the new paradigm.

10 Alan Kay, spoken at a 1971 internal Xerox planning meeting, as quoted at http://www.lisarein.com/

alankay/tour.html (http://www.lisarein.com/alankay/tour.html\
1 1 Thomas Kuhn, The Structure of Scientific Revolutions (http://www. press, uchicaeo eduJcsi-bin/hfs en/

00/13220.ctl\ 10.

b CHAPTER 17

Pamela Jones

Extending Open Source

Principles Beyond Software

Development

It starts with an idea.

Linus, for example, realized that if he put his kernel project online, people all around

the world could work on it together, without having to be in the same building. They
could quite literally write software in public that way, scattered around the world

though they were.

Understanding such simple things changes the world sometimes.

But what about other areas? Is it possible to extend that same process to other kinds

of work, or is it suitable only for software development? One thing can now be said

for sure: legal research can be done that way. Groklaw is the proof of concept. But as

I will explain, you need to tweak things just a bit.

I ve done legal research for a living as a paralegal, and now I ve done it with the world

as a Groklaw volunteer, and I am therefore in a position to make comparisons. I think

any company involved in any legal dispute that touches on technology could profit

from using the open source method to tap into the community s group knowledge

pool.

I m a good researcher, and I do excellent work, but I know without a doubt that the

input from thousands of readers made a huge difference in what Groklaw was able to

accomplish in digging up helpful information in the SCO litigation.

How Did It Happen and How Does It Work?

When I began, it was just 1 il ol me. I had read Slashdot enough to know that while

there was a high level of technical knowledge in some of the site s readers, the level of

legal knowledge was low. I also saw there was a hunger to understand the law. Techni

cal information that could influence the outcome of a lawsuit was available there, but it

was not reaching the attorneys. And legal information that could help techies know

what to dig up and helpfully provide was not readily available to the FOSS community.

At the beginning, I was trying to learn how to blog, because I had a job interview for

a freelance assignment helping an attorney with his legal blog. You have to write

something if you are blogging, so I decided to write about what I knew best, which is

legal research. It felt private, like a diary, and I didn t think anyone would find what I

was writing about or care much if they did.

I wrote to the air, thinking no one would read it anyway, and I horsed around, finding

funny graphics for as many of the entries as I could, but it was just for fun, just to learn.

I eventually chose to focus on the SCO v. IBM case because it appealed to my sense of

humor and stirred my hatred of injustice, and because I knew quite a bit about the GPL,

as it happened, and I knew SCO was going to fail on that part of its claims. I was also

quite confident that Linus was not going to infringe on anyone s code on purpose. So,

every day I d add a little bit more to the story, as I saw news stories about the case and

SCO s claims. I wrote as though I were talking with a good friend over dinner who

asked me, "So, what s this SCO case all about? Is there any chance they could win?"

I didn t dumb anything down, because I wasn t thinking about an audience anyway,

and I went into the research I was finding as deeply as possible. It did occur to me

that I might find some things that would be helpful to Linus and to IBM I figured

IBM might have a service that scours the Net to find IBM-related stories but that

was the extent of my ambition. I knew most attorneys don t know a lot about com

puters or Linux or the GPL, and I knew a fair amount about them all, so I felt like I

was throwing a message in a bottle out into the ocean, just hoping someone would

find it and it would be useful.

After a couple of months, I got an email from a stranger, asking if I could please

make the graphics smaller, because he was in Europe on dial-up and the blog took

forever to resolve. He sent me instructions on how to do it.

Until that email, I had never bothered to read the stats on my site, even though Radio

Userland, the software I started blogging with, provides them. I come from a family

that has very little interest in computers, and I was used to people being emphati

cally uninterested in things I find fascinating, I didn t expect even my mother to read

my blog. So, when I got the email, I was floored. I wrote back that I didn t know any

one was reading what I was writing, and he told me that lots of people read Groklaw,

and that the community appreciated very much what I was doing. I was simply

floored. I think I will remember that feeling until the day I die.

274 * x Extending Open Source Principles Beyond Software Development

I looked at the stats and found out hundreds of people were reading what I was writ

ing, apparently regularly. I turned on comments and, little by little, information

began to be offered, particularly when I would ask for it, which I did more and more.

Radio Userland also has stats on where your readers come from, what web site they
visited before clicking on your site, and what I saw from that was that my readership
was consistently growing, it was all word of mouth at that time, and the caliber of

reader was very high. It included a high number of lawyers and programmers and

professors at universities, from all over the world.

Finally came the idea. I had dug up some information about a Linux kernel author

who made contributions to the kernel while an employee at Caldera, and when
Slashdot put that article up on its site, the first time that had happened to Groklaw,
the number of readers exploded. Even better, they had more information to offer.

One would find an old press release, another an article from five years ago, another a

speech by an executive, and so on.

When I saw that start to happen, I created a Legal Links page (http://www.grofelaw.net/

staticpages/index.php?page=kgal-links\ with links to legal resources, and started point

ing to articles explaining things like copyright and patent law, things readers needed

to understand so as to know which article or which press release detail mattered.

I realized then that Groklaw could be a bridge between the tech and the legal worlds,

and that if I explained clearly how the court system works and what kind of evi

dence is valuable in that context, the community would find it, add what they knew,
and it could work. The necessary pieces were in place. And I suddenly but totally

understood the power inherent in this process of open, group effort. It felt like try

ing to ride a giant wave, as opposed to trying to turn on and then direct a stream of

water in a particular direction. It had a life of its own, and my job was to try to fol

low the flow, not control it.

We found more and more. The readers built on each other s knowledge, and I

learned that way too. My email level shot up also, as readers more and more began
sending me tips and links and information. At the time, reporters were faithfully

writing down every word the SCO folks spoke and reporting it as if it were all true,

so I began reaching out to journalists. As we found information, I sent it to journal
ists, and some, to their credit, responded; some immediately, others over time.

Working as a Group

The first group project, in the sense of planned action, was to help everyone know how
to write to journalists and editors so as to get good results. The FOSS community is not
a group of phonies, and they tend to speak their minds. Also, a lot of us geeks are not

socially skilled, so sometimes journalists would tell me how offensive the email they got
had been. So, I put up on Groklaw examples of good letters, letters that did not offend,
and the point was well received, so much so that I had two journalists remark that they
never got any flames or nasty email from Groklaw readers.

Working as a Group J* 275

At one point, we decided that someone should answer Darl McBride, CEO of SCO.

He had written an open letter to the open source community. I asked if my readers

felt like writing a response, and they did, so we worked on it online together, in the

open. After all, his letter was addressed to us. Ideas would be left as comments, and

then I d incorporate them into the letter and post the next version; Then readers

would suggest tweaks and more data, which I d then incorporate and post the next

version, until we were all satisfied. It took about two weeks. The Inquirer, which had

been watching us create it, offered to post the letter and an accompanying collection

of research supporting the points we had written on its web site.

This was very helpful, because by then, so many comments were being placed on

Groklaw hundreds more than any other site on Radio Userland that the software

was struggling, and we were afraid that if we got any more traffic, we d simply melt

off the Internet. That letter led to another growth spurt of Groklaw members, and at

around that point, we simply had to move to larger quarters, and ibiblio graciously

invited us on board after a Groklaw member wrote them to petition on our behalf.

It was still the early days, back in the fall of 2003, and we hadn t yet attracted many
trolls or astroturfers, which is why it all worked so well. We were a group of like-

minded people, all striving toward a common goal. No one cared a bit about credit, only

results, and it was refreshing, even if it was one of the hardest things I ve ever done.

What did I learn? That there truly is wisdom in crowds, and that you can rely on

someone in such a group thinking of everything you truly need. Also, that some

body has to be willing to work harder than everyone else and be the final arbiter, or

nothing ends up getting done. Later in Groklaw s development, there were other les

sons to be learned.

Dealing with the Disrupters

As Groklaw became more popular and began winning recognition, along came the

deliberate disrupters. I got my Ph.D. in trolls and astroturfer, you might say, so I ll

share with you some things I learned in the University of Trolldom and Astroturfing,

because it has a bearing on whether an open legal research project will succeed or fail.

Here s what I know. Trolls are mean. I can t stress that enough. If they see you trying

to go to the right, they push to the left. Then they place comments whining that you
won t go to the left or insist you ought to be going left but are going right when you
shouldn t be. It doesn t matter at all that you are correct in wanting to go to the right.

It doesn t matter that it s your decision to make. It doesn t matter that they are inter

fering with the work you ve set out to accomplish. They are spoilers, and the bigger

the blotch they leave on your page, the better they like it. There is nothing to do with

a troll but delete his comments when you are sure trolling is the purpose. If you are

weak in the knees and can t bring yourself to do that, trolls will destroy your open

group project. It s that simple and clear. They enjoy destroying what you want to do.

Z7B X Extending Open Source Principles Beyond Software Development

When the open source project is legal research, you also must expect that the side

you are working against will show up. They won t be wearing an ID tag. They are

essentially spies. Here s how you will know: they work harder than anyone at first,

and when they think you are lulled, they try to destroy your reputation and maybe

your life, if they have the resources to do so. The interval when they are helping,

however, has one purpose only: to gather information to use against you later and to

form relationships with your volunteers, so they can undermine from within. It s

absolutely essential to identify and either eject or corral such individuals. I can t

explain how to do this in great detail until after the SCO wars are over, but it s not

impossible to do. Of course, you need a strong stomach and a bit of a tinfoil hat.

I will give just one example. The very first such individual showed up when Groklaw

was very new. He began by attacking Linux, then pretended to have an epiphany
thanks to Groklaw, and then tried to stir my readers into unhelpful actions. For

example, he suggested that everyone send Darl McBride certified letters protesting

his actions. Certified letters. Right: SCO would have everyone s address.

Another time, he suggested everyone go to court in Groklaw T-shirts and take PDAs

and phones to record the session, which they could stream to Groklaw live. That, of

course, would have been a problem. First, the T-shirts would have made partici

pants look undignified, but it would also have made them easily identifiable. This

was not helpful. And recording a court session is a violation of court rules. I could

just see the headline, so I had to put the kibosh on that fast. I did so by deleting his

comments.

I know someone will put up a web site all about this now, but I don t care. You need

to know that such things will happen, and you must be ruthless in making sure such

individuals don t take over. They will try. Some will be fooled and will criticize you
for stomping on the spy s ideas, which he will offer with so much mock sincerity, it

isn t hard to comprehend how others accept it at face value. You can t explain pub

licly that you researched the individual and are reasonably sure they are a spy, and

you must just take your lumps. Let them put up web sites. In the end, what matters

most is that they are isolated.

Astroturfers are sometimes of that same mind, but usually they just want to steer the

conversation their way. They don t want to be kicked off, so they are subtler. We
have had a number of astroturfers. I call them the "I used to love Groklaw, but"

crowd. Some of them look, at first, like spies. They work harder than anyone, take in

all the info they can about you and how you work, and then diverging from the spy

path they try to steer your project their way. If they fail, at some manufactured

moment they publicly find fault with you and your work and loudly make their

grievances known to the world, using your own web site and others to try to destroy

your reputation. Sometimes they ll put up whole web sites about it. They re mean
too, but it s just a job. Nothing personal. They just play-act the emotion.

Dealing with the Disrupters ** 277

All three groups will, sad to say, appeal to some of your readers. They deliberately

manufacture issues they know will draw followers. If you leave their comments on

your site, they will take over the conversation and readers will leave in disgust. If you
moderate them away, they will loudly proclaim their love for freedom of speech, and

some will join them, not realizing they are being played like violins. The purpose is

to destroy your project and make sure it never succeeds. This is something that

rarely happens in Linux kernel development, and in my experience it requires tweak

ing the open source process just enough to keep getting your work done.

Deciding what goes into the Linux kernel is a breeze in comparison to deciding whose

ideas can be trusted in doing legal research. You must trust your instincts, and it is one

of the most important reasons the majority can never rule when doing research.

The Difference Between Doing Legal Research in Public and Writing

Software in Public

I mention all this because if you are doing legal research in public, sometimes you
can t say in the open all you might say privately or if doing legal research for a firm.

Parties are in litigation really don t want to show the other side their cards until trial,

as you may have observed in the protracted discovery wars between IBM and SCO.

You may have an idea for an avenue to research, for example, but you don t know

what the result of your research might be. If it is negative, it might not be wise to

present the news that you are researching this area until you know what you have

found. Sometimes information that seems negative, upon deeper digging, turns out

to be helpful, and you very much might want to wait to tell the world all about it. It

isn t a matter of hiding information; it s more a question of timing and presentation.

Someone in a legal research project has to know what to keep private and what to

make public. There is a great deal at stake, and the outcome can be affected by the

decisions you make. That simply never happens in developing the kernel. So as time

went on, I built up a feel for whom I could trust in an inner circle of advisers, for

both legal and technical research. No one person can do everything, so spreading out

the responsibility is vital.

I view the most beneficial structure for such work as a kind of pyramid, where any

one is free to contribute at the bottom of the structure, but as the information moves

up the chain, it finally has to go through one or a few at the top of the pyramid. In

my experience, that person or persons must be able to say no and mean it, come

what may. They must know enough about legal work to intelligently decide what

should and should not be published and in which direction to take the work next.

And they have to have thick skin, because criticism is sure to come from those who

wish to turn the process upside down and have all decisions made by some kind of

democratic vote. Linus doesn t even do things that way, but some will be sure he

does and will try to make you follow such a setup.

278 X Extending Open Source Principles Beyond Software Development

Perhaps that works in other fields, but in my experience it doesn t in legal research.

It probably would work beautifully if all the volunteers were lawyers, paralegals, and

professors. Or it might work if your geek contingent didn t vote on legal issues, only

tech issues. Otherwise, you are doomed, because it is hard for those who aren t legally

trained to realize just how complex the law really is, and when they learn a little, they

sometimes think they know enough to begin running the process. A little knowledge
can actually be worse than none at all, especially when accompanied by a lack of humil

ity.
I could write three chapters on this subject, but I ll spare you.

The reverse is true for me with tech decisions. I know I am not the expert there, so I

never make those decisions. I trust reliable lieutenants to decide such things, and I

listen to my readers very carefully.

It s the same with deciding which stories to mention and which to ignore. Part of

Groklaw s purpose is antiFUD, but there is so much of it, what do you cover? I ve

learned to trust my readers opinions on this, and if I get a lot of email about a story,

I know it matters, even if I didn t think so originally. So, there is a kind of group

decision-making.

In many ways, it s not unlike the kernel process, but there are elements of necessary

secrecy in legal research that you don t have in programming. No one is likely to sue you
for what you post about the kernel, but someone very well may over open legal research.

For example, we tried a second public group project a summary page and the

troll-astroturf contribution was so high, I was afraid of being sued, because they left

outrageous comments that I frantically scurried to get rid of, and they presented
ideas that while sounding superficially plausible were actually designed to take

the work in a direction that would undermine the effectiveness.

Eventually, we had to take the work private, which was not a huge problem, because

by then I knew who was skilled at this kind of thing. Groklaw is a meritocracy. I

leave the structure loose, so anyone can volunteer to do anything they feel like doing,
but over time, I notice whose work is most useful, and others usually agree.

Still, it s an unfortunate thing that we had to do that project behind the scenes, because

we had to limit ourselves to only those we already knew, which is not desirable in an

open project. The workaround I ve found is to do the fundamental work with known
and trusted volunteers, and then post the results for comment and tweaking by the

public at large. That keeps the door open to some brainiac newcomer, which you want,
but it doesn t let spies and disrupters ruin things, which you don t want.

Why and When It Works

I don t think the process would work as well for a less, shall we say, inspiring case.

Volunteers responded because they seriously cared about the outcome, not because

they found learning to do legal research fascinating. I have gotten a lot of email about

Why and When It Works
**

279

enjoying the learning, actually, but I also know that SCO was an inspiration. For

some, watching an attack on Linux is like watching someone kick Dorothy s dog,

Toto: people get mad and want to do something about it. You don t get the same

response in all cases or by paying people. There isn t enough money in the world to

pay me for the amount of work I donated to Groklaw, the nights without sleep, the

anxiety, or the jerks I had to deal with sometimes, if I may speak plainly.

But it isn t by any means the only case I or my readers care about. Patents and stan

dards also interest the FOSS community and should there eventually be a patent

infringement attack on Linux or GNU/Linux, as I believe there will be, I know for

sure that the community will react and be available to help. I hope and expect that

Groklaw will be ready to be useful again, perhaps in doing prior-art searches, for

example, which could definitely be done completely in the open, in contrast to the

legal research in the SCO case.

I also know that if a company had a tech issue and needed to tap into the Groklaw

group mind, they could simply place the issue as a comment, and readers would tell

them whatever they knew. The encouragement on Groklaw is that you provide either

a URL or personal experience to back up the thoughts you ve expressed, so that any

one can follow the thread and prove or disprove it. That is vital. It lets everyone

know that what they comment about is important, that they must stand behind what

they write and be responsible to be careful.

The power of applying open source principals to legal research is real. I ve lived it,

and I feel it. It worked because no one knows as much as all of us together. There is

no law firm in the world that can afford to hire the numbers of researchers Groklaw

made available. And a small group of trained paralegals would not have been able to

find all the technical information that we at Groklaw found together.

So the bottom line is this: as long as there is the heart and the will to do it, the open

source process is effective in doing legal research. If you would like to experience it

in action, come and join in the fun.

Z80
*
* Extending Open Source Principles Beyond Software Development

b CHAPTER 1

Andrew Hessel

Open Source Biology

Open source software (OSS) has played a central role in the growth of the Internet

and increases in economic importance each year. It has rapidly changed the face of

computing, with server side companies like Sun Microsystems, to end-user compa
nies such as Adobe, to full platform/service companies like IBM incorporating open
source into their offerings. With this success, open source is poised to diversify its

influence. One experiment is open source biology (OSB), the idea that biological

products such as drugs, vaccines, or pest-resistant crops, can be developed using

open intellectual property (IP) models.

Academic science, like open source, supports the belief that knowledge evolves best

when ideas, data, and methods are freely shared, and each contributor can build on the

works of others. Universities have housed and promoted scientific thought for more

than 1,000 years, creating a public commons. In contrast, alchemy is the forerunner of

modem business. Today, with academic research a valuable economic good, weighing
the societal benefits of freeing or protecting IP is a pressing challenge. In no scientific

discipline is this more important than biology, central to all living things.

Commercial biotechnology was founded on the premise that strong IP protection was

necessary. However, after nearly three decades, a sustainable industry has not yet been

achieved. Public mistrust of the genetic technology persists. Now, with biology facing a

paradigm shift, one where synthetic DNA will replace conventional manipulations,

genetic engineering is converging with software engineering. OSB, guided by lessons

from open software development, could result in a new, economically supportable
route to biological products.

The Rise of Modern Biotechnology

The success of the Manhattan Project brought university research to national atten

tion at the end of World War II. Recognizing the economic and defensive value of

this work, the project s director, Vannevar Bush, produced a report for President

Roosevelt titled "Science The Endless Frontier," encouraging greater federal sup

port for public research. This document led to the creation of both the National Insti

tutes of Health (NIH) and the National Science Foundation (NSF), now the main

agencies that support life science studies.

Through the late 1960s, biological science was conducted almost exclusively within

academia and had few ties to business. The commercial value of biology was unrec

ognized. Drugs were chemicals and pharmaceutical innovation had stalled in the

absence of new targets. Chemistry and engineering, not biology, represented the

majority of industry partnerships. Where university-industry relationships did exist,

activity was generally low. Technology transfer occurred primarily via corporations

hiring university graduates or academic consultants.

In the early 1970s, a new generation of life science companies began to appear, with

some focused on developing DNA technologies. Although DNA was discovered in

1953, it had remained a curiosity of chemists. The amino acids (the fundamental

building blocks of proteins) corresponding to genetic code were not determined until

1965, and few techniques existed to "read" or edit the chemical instructions. A

breakthrough came in 1973 when biologists Stanley Cohen (Stanford) and Herbert

Boyer (UCSF) developed a practical way to manipulate DNA constructs. Their

method for recombinant DNA technology, published in the Proceedings of the National

Academy of Sciences later that year, described how fragments of DNA could be

directly cloned and expressed in other cells.

With recombinant techniques, snippets of the molecule could be "cut" from one

genome and
"pasted"

into the DNA of another with enzymatic tools. Common

microbes like the gut bacterium Escherichia coli could be transformed into miniature

factories, able to make biochemical products difficult or impossible to synthesize

using standard chemistries. DNA created an efficient way to develop biologicals,

including vaccines, viral components, or even complex proteins like hormones or

antibodies. Heavily touted in the scientific and popular media, genetic engineering

created great expectations for the future.

News of this technology reached Neils Reimer, the director of Stanford University s pat

enting and licensing efforts. Earlier, Reimer had developed a novel IP capture scheme

intended to grow licensing revenues. Under his plan, IP was solicited proactively, with

any resulting royalties split equally 0/3 each) between the submitting researcher, the

researcher s department, and the university. With scientists benefiting directly, IP sub

missions increased significantly. Pleased with the results, Stanford went on to create a

2K ^ C Open Source Biology

formal IP development service, the University Office of Technology Licensing, one of

the first dedicated technology transfer offices in the country.

Reimer recognized how attractive the new DNA technology would be to industry.

Cohen gave his permission to proceed with a patent, but true to academic princi

ples, disavowed any personal share of proceeds. Reimer s application to the U.S.

Patent and Trademark Office (USPTO) became the center of scientific and public

controversy. Apart from the safety of genetic engineering, concerns included opposi
tion to the patenting of a general research method, questions over the patentability of

life forms and genes (eventually affirmed by the Supreme Court in Diamond v.

Chakrabarty\ and how university commercial activities might threaten free inquiry.

Complicating matters, government policies that addressed the ownership of inven

tions made using federal funds were vague.

Eventually, commercial interest outweighed safety and regulatory concerns, and U.S.

patent 4,237,224 was granted to the two universities in December of 1980. Two
other applications related to the technology, collectively known as the Cohen-Boyer
recombinant DNA cloning patent, were also issued and describe some of the fundamen
tal tools for the sciences of molecular biology and genetics.

Commercial biotechnology began with a handshake deal. In 1975, venture capitalist

Robert Swanson met Boyer at a bar near the UCSF campus. Over drinks, they formed a

plan to create a company to sell gene-based medicines. They incorporated Genentech

(Genetic Engineering Technology) the following year, with each making an initial invest

ment of $500 in the firm. Two years later, the company had successfully cloned and

expressed the gene for human insulin, a remarkable achievement for the day. When
Genentech shares soared at IPO in 1980, they initiated a wave of speculative activity that

carried another dozen biotechnology firms to the market over the next 24 months.

The biotech boom quickly transformed the congenial, open world of biological
research into a genetic gold rush. Overnight, academic scientists were thrust into the

role of executives and businessmen. Naive, brash, and fueled by VC cash, they com
peted against each other to identify and express medically important genes. Still

skeptical of the technology, pharmaceutical companies watched from the sidelines as

Genentech cemented its early lead, licensed insulin to Eli Lilly, and brought recombi
nant Human Growth Hormone to market independently in 1985. In less than a

decade, a credible threat to established chemistry-based pharmaceuticals had

emerged from nowhere.

In virgin commercial space, biotechnology grew rapidly, along with a host of support
ive companies. Firms scrambled to identify and characterize new genes potential

drug targets and a scarce, nonrenewable resource funneling millions into parallel
research streams. With a new tool for dissecting cellular biochemistry that allowed the

molecular basis of human disease and health to be explored with precision, academic
research also flourished. Other genetic technologies soon followed in the wake of

The Rise of Modern Biotechnology
*
C 283

recombinant DNA, including polymerase chain reaction (PCR) a method of amplify

ing minute amounts of DNA. The rate of innovation in life science moved closer to that

of the semiconductor industry.

New legislation was created to streamline the transfer of IP between the public and

private domains. Significantly, the Bayh-Dole act of 1980, drafted to encourage pri

vate investment for the commercial development of academic discoveries, allowed

institutions to file patents on inventions resulting from federally funded research.

Research became a new source of revenue for universities. Schools established or

expanded technology transfer offices, which grew from 25 or 30 throughout the

country in 1980 to more than 250 today, and began to actively seek commercially

attractive ideas. Biology figured prominently in this search. According to recent sta

tistics, currently 10 of the top 25 holders of U.S. DNA-based patents are universities,

research institutions, or the U.S. government itself.

How to best manage biotech IP was an open question. With gene sequences poten

tially worth billions, and the validity of biotech patents untested, aggressive IP cap

ture was encouraged, if only as a defensive measure. This position has been rein

forced over time, and is now widely reflected in industry practices and statistics.

According to a survey of biotech patenting trends published in the October 2004

issue of Nature Biotechnology, only 42 DNA-based patents were approved by the

USPTO in 1981; by 2001, this figure had swollen to 4,463 although numbers have

fallen back to roughly 3,500 since this peak. The Biotechnology Industry Organiza

tion (BIO) maintains that strong IP is essential not only to the success of biotechnol

ogy companies, but also to their survival.

Biotechnology delivered on its promise to bring new innovation and wealth. Today

more than 200,000 people are employed directly by the industry, and companies

have appeared to fill every technological and market niche. Biotechnology has led to

many new medicines, diagnostics tools, and consumer products, including food, tex

tiles, and enzymes. It has also stimulated new innovation in the traditional pharma

ceutical and agricultural companies, all of which today incorporate biotechnologies

into their research and development programs.

Universities also participated in the prestige and economic rewards of biotech. Bio

logical research has blossomed throughout the academic world. By helping the first

biotech startups get their footing, universities have formed close relationships with

these now-established firms. These alliances were seeded in part by the nonexclusive

licensing of Cohen-Boyer methods, eventually leading to more than 400 companies

purchasing rights. Licensing proved a rich source of university discretionary funds,

with Cohen-Boyer alone returning about $250 million to UCSF and Stanford over

the 17 years the patents remained in force.

284 X Open Source Biology

Intellectual Property and Growing Challenges

Biotechnology now touches on virtually every facet of human culture and technologi

cal achievement and is a rising economic force throughout the world. All Western

countries (and many developing ones) have specifically targeted life science as an

engine of long-term economic growth. The public and scientific expectation for what

biotechnology can or will accomplish has yet to peak, in part because the technology
is still relatively complex and confined to professional circles.

Life science research has enjoyed healthy expansion within academia, supported in part

by the N1H, whose annual budget increased from $3 billion in 1980 to over $27 billion

in 2003. Reflecting this growth, the primary result of research scientific publications

continues to mushroom. Pubmed, a journal database service maintained by the National

Library of Medicine, adds 7,000 new science and medicine citations each week and now
indexes more than 15 million listings from 18,000 journals. The volume of scientific

data has driven scientists into increasingly fine specializations in an effort to remain cur

rent with recent literature.

The biotechnology industry has also enjoyed rapid expansion, fueled by pharmaceu
tical research and development (R&D) spending that climbed from $1.5 billion in

1980 to more than $20 billion in 2002. More than 1,450 companies now operate in

the U.S.; those publicly traded have a market capitalization of about $300 billion.

Industry revenues have increased from $11 billion in 1994 to almost $39 billion in

2003, mainly from the sale of drugs a consumer market that continues to expand.
The Congressional Budget Office (CBO) reported in 2003 that prescription drug

expenditures rose at an inflation-adjusted rate of 14.5% between 1997 and 2002 to

surpass $160 billion annually, outpacing all other health spending categories.

Yet, despite these strong results, biotechnology is not the picture of perfect health. In

defiance of R&D spending trends, drug output has slowed over the last decade.

Applications to the Food and Drug Administration (FDA), the agency responsible for

evaluating new pharmaceuticals, fell from a high of 131 in 1996 to only 72 in 2003,
while approvals of new molecular entities (NMEs) fell 60% over the same period,

dropping from 53 to 21. Even with the growth observed in drug sales, the biotech

nology industry as a whole remains in the red, recording $50 billion in losses since

1994. The top 50 companies account for the bulk of the industry s market capitaliza
tion and revenues.

While research seems to be thriving, development in life science, a process exclusive to

the commercial domain is struggling. Although often grouped together as
"R&D,"

research and development are actually very different processes. Research tends to be rela

tively unstructured and produces new observations, often summarized in scientific publi
cations. It attracts free thinkers, explorers, and risk takers. In contrast, development
attempts to transform a research discovery into a finished product, ready for sale. Drug
development can take years to advance a molecule through the series of phased clinical

Intellectual Property and Growing Challenges * C 285

trials (ranging from I to III) meant to determine basic safety, dosages, and efficacy neces

sary before seeking the FDA s approval for sale. Most drugs never exit this
"pipeline."

If

they do, they enter an ongoing postmarket analysis (Phase IV) that in part monitors for

rare or long-term effects. Development thus attracts careful, detail-oriented, process-

driven individuals intent on minimizing risks.

Pushing a drug through development requires massive investment and commitment.

Wyeth R&D president, Robert Ruffolo Jr., estimated in 2003 that R&D charges now

range between $1.2 to 1.4 billion, while others place this figure anywhere between

$400 million and $800 million. There is no way to be sure of the true cost, as com

panies closely guard these figures, which are used to justify new drug pricing. What

ever the exact numbers, the cost of drug development continues to rise at about 12%

to 14% each year, well in excess of inflation. Given finite financial resources, the

increasing cost of developing a new drug is the main bottleneck between promising

research and new therapeutics. Only a small fraction of research, public or private,

will ever enter the development pipeline.

IP practices contribute to this constriction. Only heavily protected molecules are likely

to be backed by investors and developed. Competitive pressures have also fostered a

secretive mindset and produced a mass of patent claims renowned for its complexity.

This "thicket" impedes collaboration and materials transfer with other companies and

universities, slowing R&D. IP sculpts the overall form of biotech companies. In an effort

to reduce intellectual friction while retaining proprietary control, companies are driven

to bring outside groups "in-house" through purchase or hire. In part, this has resulted in

successive waves of merger and acquisition (M&A) activity, consolidating the biotech

and pharma industries to produce giant, global organizations.

While sales and marketing efficiencies may result from consolidation, little proof that

size only can yield R&D efficiencies remains scarce. Research cannot be mandated, at

any price. Meanwhile, candidate drugs in development although selected with the

utmost care may fail at any point in the pipeline. Given these risks, the ability to

remain flexible and make unbiased decisions would seem crucial, but large R&D

organizations can display considerable inertia and be hard to steer. Research may be

slow to transfer to development, while failing projects in development may linger in

the pipeline, burning cash. Industrial scientists also face intellectual isolation, with

little exposure to ideas or peers outside company walls. Finding the right balance for

successful research and development has been difficult for companies one factor in

why life commercial R&D has yet to demonstrate any clear economies of scale.

Meanwhile, expanding corporate bulk narrows the range of development choices that

make economic sense. Large companies often set their sights on blockbusters mole

cules with the potential to bring in $1 billion or more in annual sales. This makes the

choice of what candidates to advance into development critical a multibillion-dollar,

multiyear commitment with risks and rewards different for each molecule. Even FDA

approval for sale does not eliminate risk exposure, since drugs can be withdrawn if

286 ^ C Open Source Biology

serious complications are discovered an outcome certain to produce a flurry of class

action lawsuits. Accordingly, the industry lobbies that strong IP is necessary for compa
nies to recoup R&D costs, have cash to expand R&D activities, and also accumulate

defensive legal reserves.

At the other end of the corporate spectrum, small biotech companies also struggle with

IP. Nimble and highly motivated, most struggle to manage cash "burn" just to survive

among the big industry players. They face not only high R&D costs, but also substan

tial legal fees, as they work to create new products or technologies. With limited cash

and only a small number of patents in their IP portfolios, they produce little competi
tive pressure in the industry. Most remain speculative investments with almost no

opportunity to independently market drugs. To persist, many companies form a symbi
osis with big pharma, while others offer themselves as prey innovative fodder for

those with the resources to consume them.

Meanwhile, the richest and most plentiful source of low-cost innovation for compa
nies academic research is fast drying up. Universities, while still friendly to commer
cial interests, better understand the value of their IP and have become shrewd negotia

tors. Technology transfer negotiations require more time and end up costing much
more money. In response to these complications, deals and collaborations with individ

ual researchers have fallen out of favor, in preference to comprehensive "blanket" alli

ances. These sweeping arrangements, however, are much less attractive to the universi

ties, particularly in the face of mounting reports of conflict of interest. The ideal

economic balance for IP transfer from the public to private domain remains to be found.

The present drug development paradigm thus appears to suffer from economic chal

lenges that have yet to be solved. Perhaps the most worrisome of these problems is

the industry s failure, despite great internal effort, to decrease drug development
costs. Without a turnaround in this metric, no reversal of drug output or consumer

pricing trends can result a mounting concern as Western society ages and demands
more healthcare. Increasing tensions is the recall of several heavily marketed drugs
that may have shown dangerous side effects even in early testing. Not only has this

damaged consumer trust that companies will make safety the top priority, but it has

also called in question the FDA s practices and relationship with industry. It has even

forced a reevaluation of the financial risks and liabilities associated with large-market
blockbuster drugs.

Open Source Biology

With present pharmacoeconomic trends unlikely to change in the immediate future, the

path toward a sustainable drug industry remains as elusive. There is also a widening

understanding that today s pharmaceutical companies focused on disease manage
ment may not have consumers best interests in mind. Today there are few incentives

for companies to improve any drug (at least until patent protection nears expiration) or

to develop biological technologies that might lead to either prevention or cure.

Open Source Biology
"

2B7

In this light, some have begun to openly question whether there are other viable

paths to drug development. At the heart of alternative routes is IP management.

Since the passage of Bayh-Dole, scientists have been presented with two options for

sharing research: publication; or patent and license with optional publication. The

latter choice, heavily favored for discovery with commercial potential, has resulted in

the current biotechnology industry. The alternative open, unrestricted publica

tion has never been seriously considered a path to commercial development in the

life sciences.

Now, open source, mainly used to develop computer software, has yielded strong

evidence that open development may in fact be economically viable. OSS projects,

including the Linux operating system and Apache Web Server, have become promi

nent examples that open strategies can result in robust, commercial-grade offerings.

Open source has also emerged as an economic force, resulting in the formation of

new companies like Red Hat, or adding revenues to the top line of others, like Sun

and IBM. This success has encouraged speculation that similar results could be pro

duced in biological development, if OSB could be made to work.

Recently, lawyers Stephen Maurer and Arti Rai and computational biologist Andrej

Sali published a paper titled "Finding
cures for tropical diseases: Is open source an

answer?" to discuss how OSB might work. They suggest that OSB could organize

many small research and development efforts toward the manufacture and testing of

tropical disease drugs, reducing the final point-of-sale cost. Whether such a scheme

would work in practice is unknown. However, there is no a priori reason why non-

software products like drugs cannot be made using open source methods: it is not

unreasonable that a community of open drug developers could produce open drugs.

The unanswered question is whether, without IP, this development could be made

economically sustainable enough to attract investors.

Any R&D effort, drugs or software, will consume resources that have real dollar costs.

OSS developments are economically sustainable in part because these costs are kept

very low. Geographic location, time zones, and physical facilities are not factors. Simi

larly, legal fees, product distribution costs, communication charges, and travel costs are

also essentially zero. Few salaries are paid. OSS works because overhead is minimized

while the aggregated value of donated developer time keeps growing over time. OSB

faces a different economic reality. Any life sciences project, even an open source one,

would come attached with physical constraints and very large costs. Laboratories are

required. Millions of dollars of reagents, equipment, and testing are necessary. Realisti

cally, before any OSB effort could yield a commercial product, the real dollar cost of

biological R&D would need to be greatly reduced.

The Internet is helping to do this. The Web has already dropped the direct cost of

doing scientific research, while also encouraging IP freedom. It has become an impor

tant repository for scientific information, much of it accessible openly and for free.

Open access journal sites like the Public Library of Science (PLoS) and BioMedCentral

288
*
* Open Source Biology

now deliver peer-reviewed articles online at no charge and without copyright restric

tions. Databases of DNA sequence data, human variation data, and, more recently, clin

ical trial results are available online. Sophisticated tools that link research datasets and

support complex queries are beginning to appear. Science Commons, recently

launched by the nonprofit Creative Commons, hopes to further interaction by making
it easier for scientists, universities, and industries to share data and other IP. Overall,

the Internet now allows most individuals, professionals or not, and even those in devel

oping nations, free access to a wealth of high-quality scientific information. The main

challenge for OSB to work, then, is to translate this research data into sustainable real-

world open development projects.

New development strategies are beginning to emerge. Although not strictly open
source, the company OneWorld Health appears to have found one successful path to

reducing both IP and development charges. Based in San Francisco and billing itself

as the first U.S. nonprofit pharmaceutical company, OneWorld assembles donated

IP, expertise, and funds to further therapeutic development for diseases common in

the Third World. It is working on drugs for malaria, leishmaniasis, and Chagas dis

ease (a parasitic disease that can lead to heart failure), among others, and expects to

launch its first product in 2005. However, while OneWorld s efforts are to be

praised, its model is limited to drug molecules and markets not considered interest

ing to its proprietary partners.

The Biological Innovation for Open Society initiative (BIOS, http://www.bios.net), the

brainchild of plant biologist Richard Jefferson, is also working to reduce the cost of

biological development, and is willing to challenge proprietary groups to do so.

Launched in 2004 and supported by a Rockefeller grant and technology from IBM,
BIOS provides researchers with tools to share, manage, and navigate biotech IP, with
an eye to facilitating open agricultural biotechnology. Keen on open source, Jeffer

son intends to create a patent commons and seed it with a broad method that allows

plant researchers, public or private, to sidestep proprietary gene transfer technolo

gies that restrict genetically modified (GM) crop development. Crops created with
this community IP would be more affordable by growers throughout the world and
be easier to manage than proprietary offerings. Meanwhile, the open patent com
mons would provide a defensive shield against proprietary challenges to their use.

Yet neither of these development models resembles the archetype OSS project, with
an online platform, simple IP structure, and low overhead. For this reason, support is

being found for a simpler model, a direct way for open source biology to follow in

the footsteps of open software. The idea is to treat DNA, the foundation of virtually

everything biological, for what it already is widely recognized in biology to be a

programming language. Virtually anything related to biology on this planet, living or

not, can be reduced to this common denominator: a sequence of DNA bases that

specifies its form and metabolism. DNA in a cell is no different from the Os and Is in

a computer program. DNA is biological source code.

Open Source Biology
*
C 289

If OSS works, and DNA is software, don t reinvent: adapt. Allow genetic engineering to

be done in the same way that software is engineered today, on computers with special

ized software tools. In this way, OSB could closely parallel the strategies and, perhaps,

realize the same advantages of open source software. Furthermore, since the DNA mol

ecule can be a commercial product unto itself, and can direct biological synthesis of

many bioproducts in vivo, circumventing the need for large production facilities, genet

ics can shorten the distance between research and development considerably. Because

of these features, DNA code holds great potential to make OSB a reality, and also the

possibility of developing a wide range of open biological products economically. Today

a new science called synthetic biology is allowing researchers to move beyond mere

speculation of this potential to practically test these ideas in reality.

Synthetic Biology and Genomic Programming

Since 1972, genetic engineering has been performed using the Cohen-Boyer recom-

binant techniques. These methods require DNA molecules to be extracted from cells

and physically rearranged into new genetic designs a process not unlike writing a

letter "ransom note" style. Done in the lab, proficiency in this work typically requires

an advanced degree with practical experience, a lot of equipment and reagents, and

considerable time. Even relatively mundane procedures can take experienced techni

cians many months of tedious work, visible only by indirect methods. Compared to

other modern engineering efforts for example, microprocessor, aircraft, or building

design, today performed in computer environments genetic engineering remains a

crude, manual process.

The emergence of synthetic biology (SB) changes everything. Founded on automated

chemistries that permit long-chain DNA to be synthesized de novo, SB is a platform of

software tools used to design and test artificial DNA molecules. It is an output device

for bioinformatic software, and provides scientists with a way to write DNA

sequences, not just read and comprehend them. The technology greatly lowers the

barriers to genomic work: anyone with access to a computer can effectively create or

edit DNA with exquisite precision. Overall, by transforming DNA into a biological

programming language, SB represents the biggest improvement in genetic technol

ogy since Cohen-Boyer. It advances biological design into the digital age.

More than just bringing new speed and convenience to genetics, SB brings genetic

scientists an alternative to unrestricted publication or patent. It is a creative tool, one

that both proprietary companies and academic researchers will use to design DNA
code. However, the technology brings an opportunity to reevaluate how the result

ant IP should be protected. Today patent is used almost exclusively for biotech IP,

including gene sequences but synthetic biology makes new DNA designs into

authored products like software. This type of IP is most often protected by copy

right. Copyright would be inexpensive and easy to use, and would dovetail well with

the application open source licenses, offering attractive IP benefits. However, with-

290 C Open Source Biology

out historical or legal precedent, there is no way to know how genetic copyrights

would change R&D, or whether they would even be recognized as valid.

With the close similarity to software programming, synthetic biology gives OSB mod
eled after OSS a good chance of success. OSB could adapt the open source concepts,

tools, licenses, and business models that already exist. Already, dozens of bioinfor-

matic tools have been released under open source licenses, and software develop
ment platforms like SourceForge and Tigris could be easily modified to support DNA
codewriting. Overall, for OSB based on SB to produce biological products, it would

need to overcome only two main obstacles. First, it would need to attract an open

developer community. Second, the genetic programs developed in the digital domain

would need to be made affordably testable in real-world laboratories.

Open source synthetic biology will presumably find some support among genomic
and bioinformatic scientists, many of whom currently release both data and tools

openly on the Internet. However, Drew Endy, an assistant professor at MIT, is not

taking any chances. He is actively seeding a new generation of biological program
mers by teaching students how to build custom bacteria. Using presynthesized DNA
dubbed "biobricks," or de novo code, Endy has created the biological equivalent of

many electronic parts, including transistors, LEDs, and photosensors. Biobricks can

be assembled in various ways to new create biological circuits, with bacterial cells the

test breadboard. Biobricks form the foundation for MIT s multisite graduate student

challenge, meant to encourage new synthetic designs and raise interest in synthetic

techniques. The strategy is working: Endy s efforts have received wide attention in

the technology press, and MIT s first conference on synthetics brought together more
than 300 participants.

Endy is also a strong supporter of OSB, placing the biobricks standard registry in the

public domain, a move he hopes will encourage others to use the technology and to

share their own components. There is concern that unless an open ideology can be

fostered, researchers might choose to patent each individual component, making bio

logical programming a legal quagmire. Already, synthetic switches to turn genes on
and off have been patented. Engineers Rob Carlson and Roger Brent, also early

adopters of synthetic technologies, have warned of choosing a proprietary path and

slowing innovation. In a white paper sent to DARPA, the advanced research agency
of the U.S. military and an early backer of synthetic development, the pair argued
that the development of a public domain "kernel" in synthetic biology could avert the

negative consequences of having knowledge useful to the design of living organisms
held proprietary. They maintain that biology conducted in an open manner would
be, like open software, "robust and adaptive, providing for a more secure economy
and

country."

Great advantages could result if OSB can seed developer communities with keen
interest in writing biological software. The sharing of genetic program designs openly

Synthetic Biology and Genomic Programming
*

291

should quickly lead to novel designs. The ability to engineer life on a computer desk

top, not in a laboratory, should dissolve interdisciplinary boundaries and bring many
new ideas into the biological sciences. Importantly, it allows genomic projects to

aggregate and organize large numbers of developers. Online genomic development

communities could blossom into virtual R&D organizations that dwarf those even of

big pharma, yet be far more sustainable, open, and empowered. With inclusive mem

bership and open data, "hobbyist"
researchers increasingly valuable contributors to

astronomy, physics, and other sciences would also enjoy the opportunity to partici

pate meaningfully in collaborative genetic projects.

Meanwhile, the second obstacle to OSB producing a biological product, discovering

inexpensive ways for genomic designs to be testable in the real world, is self-resolv

ing. The per-base cost of long-chain DNA synthesis is dropping rapidly as commer

cial DNA providers compete for research customers. Today constructs that are viral

size can be produced affordably. If current trends continue, human genome-size con

structs will be realistic, both technologically and financially, by 2010. The econom

ics of making commercial products with synthetics should become more attractive

over time, if we can just learn how to write good code.

The Risk of Biological Hacking

Open source synthetic biology could result in a broad base of genomic skills in soci

ety and lead to low-cost gene-based commercial products. However, some people

worry that convenient biological programming raises the chance that amateurs, hack

ers, or even terrorists will use the same tools to develop malicious genetic designs,

either on purpose or by accident. While in silica genetic experimentation arguably

poses little risk (the information remains within the digital domain), gaining access to

synthetic DNA, or the equipment to make synthetic DNA, is not difficult, even for

private individuals. The equipment for a functional DNA lab can be bought on eBay

and would fit in a basement, kitchen, or garage. With the complete genomes for doz

ens of viruses publicly available including Ebola, Marsburg, and SARS a biologi

cal incident involving a synthetic virus may be a matter of when, not
if.

The proof of

concept has already been demonstrated: in 2002, researchers at SUNY Stony Brook

assembled an infectious synthetic poliovims using mail-order DNA fragments.

The threat of a carefully engineered bioweapon unlike anything found in nature is

thus real and significant. A CIA document titled "The Darker Bioweapons Future"

published in 2003 cites a panel of experts that note "the effects of some of these engi

neered biological agents could be worse than any disease known to man." This panel

also noted that genomics is entering "an explosive growth phase"
and that "the result

ing wave of knowledge will evolve rapidly and be so broad, complex, and widely

available to the public that traditional intelligence means for monitoring WMD devel

opment could prove inadequate." These warnings make clear that the consequences

292
*
C Open Source Biology

of hacking DNA can be greater than those of hacking computer code. DNA pro

grams, if they are chemically synthesized, will share physical reality with us. If

released into the environment, the genetic information cannot be easily deleted or

traced. Unwanted genetic distribution is already a problem in agricultural biotech

nology, underscoring the fact that this is not a purely theoretical problem. Addition

ally, unlike in the digital world, nature cannot be "rebooted" if we make a serious

mistake or encounter unexpected problems.

Yet, despite these concerns, synthetic DNA itself does not pose a new risk to society

or the environment. Conventional laboratory methods of mutating and selecting

organisms for enhanced pathogenicity have existed for decades, suggesting that those

intent on using organisms for malicious purposes are probably already well equipped
to do so. Genetic engineering is too powerful a technology to banish or outlaw, and it

is already too late to suppress synthetic technologies: the underlying chemistries have

been available for more than 20 years. Synthetic DNA will act mainly as an innova

tive accelerant, affecting all biotechnological applications, positive or negative. With

synthetic technologies, the appearance of designer pathogens tuned to defeat our

immune systems will not appear overnight, but we can no longer risk being compla
cent. For maximum safety, we need to broadly foster genetic awareness and skills in

society, if only to better deal with rapidly evolving natural threats like SARS, Asian

bird flu, or West Nile virus.

This makes the decision of whether to support OSB a critical one that extends beyond
IP or economics. OSB may prove necessary as a means to assimilate the body of genetic

information as a whole, an inherent advantage unlikely to be matched by more focused

proprietary groups. No one company has the resources to understand the full complex

ity of DNA, the most difficult programming language for humans to comprehend.
Because we didn t create the language or the computing environment, we must reverse

engineer our understanding taking systems apart one organism at a time, one cell

type at a time, and finally one gene at a time. Putting all this data together again to get
the big picture is like making a giant jigsaw puzzle. It requires cooperation, not frag

mentation, to get perspective. By this rationale, the use of open genomics may bring far

greater safety and security to synthetics. It should minimize fundamental design errors

while also maximizing the responsive capability to unexpected challenges, including
natural and engineered threats. Open computer software is also widely regarded as

being more secure and more adaptive to threats than proprietary offerings.

Future Trends in Open Source Biology

Synthetic DNA appears poised to stimulate a new wave of genomic innovation, one

closely aligned to software and using similar programming concepts. The decision of

whether to support OSB will have long-term ramifications on the environment, the econ

omy, and human health. There are thousands of biological products that could be

designed collaboratively and produced inexpensively using open source synthetic DNA

Future Trends in Open Source Biology
*
* 293

including vaccines, proteins, and gene therapies. If sufficient resources can be identified

to bring these products to market without transferring them to proprietary interests for

example, through open IP partnerships with generic drug manufacturers or HMOs, gov

ernment loans, or the collection of personal donations the commercial sale of first-run

therapeutics at generic prices could result, and not just for tropical medicines.

While real-world data and experiences will have to be collected before any conclu

sions can be drawn, the economics of open development may prove very attractive

for synthetic genetics. Nature lends some support to this idea. DNA is openly shared

in the physical world. The molecule is able to cross easily between species and is sur

prisingly plastic even within species or individuals. Not only this, but the grammar

and syntax of the genetic language have remained conserved across all species

throughout evolution. Nature doesn t waste energy with needless complications. If

has retained a common genetic language and supported free exchange because this

was less expensive than any other alternative.

If OSS proves any guide, synthetic DNA code will evolve fastest in the digital domain if

allowed to be free. Efforts are underway in the scientific community so that a fair test of

this idea can be made. Allies are being sought in government, law, finance, industry,

and the general public to marshal support for open biological development projects.

The idea is alluring to many people, in part because of the increasing awareness, use,

and approval of open source software. Just as open software now provides individuals

with greater software choice, OSB may one day offer individuals another source of safe

and affordable gene-based technologies, therapeutics, and other bioproducts.

While OSB may not be immediately attractive, and perhaps may even be threaten

ing, to some biotechnology companies, the benefits may be very appealing to others,

especially those with limited resources. Given how few biotechnology companies can

successfully produce and market any product, the value of proprietary IP may be

considerably overvalued in life science especially when sufficient R&D opportuni

ties exist to prevent competitive overlaps. Companies may find that switching to

open source allows them access to public information, institutions, and a scientific

community usable or unapproachable by their closed peers. Open companies are

able to exchange ideas or materials on core technologies easily, without threatening

development within their particular specializations.

In addition to encouraging and amassing shared biological innovation, the decision

to support OSB could produce immediate cost savings or benefits. Researchers,

whether in academia or open companies, would conserve valuable research time not

writing patent applications, while retaining the ability to freely publish and profit

(albeit nonexclusively) from their innovations. Open companies would reduce legal

costs, freeing cash to further develop programs. Universities would also save money

on IP maintenance while retaining the ability to commercialize life science innova

tions. Meanwhile, government agencies involved in IP including the patent office,

294X Open Source Biology

the FDA, and the courts could find their workloads easier to manage if open source

use grows. This will be particularly important with biotechnology IP if, as expected,

synthetic leads to an acceleration of research discovery. In any case, the use of patent

and strong IP would still remain available as an option if deemed more appropriate.

OSB could also appreciably shrink public distrust related to genetic development.
The public is growing more aware of the issues that surround GM foods, genetic test

ing, stem cell technologies, gene doping, and gene therapies. While OSB will not

solve the differences of opinion that make these topics controversial, open source

ensures that each individual has equal access to information and also a voice in what

products or technologies are developed. Open developments succeed because there

is a demand for the product and sufficient community support, be it skill or money,
to bring them to market. This shifts the agenda away from proprietary interests

toward the needs and demands of consumers a shift likely to be strongly sup

ported by those requiring new drugs or therapeutics.

OSB also fits nicely with emerging trends in health and medicine. Pharmaceutical

development is expected to grow increasingly personalized in the future, drawing on

recognition that individual variation genetic, environmental, and behavioral plays

a large role in human health and disease. Pharmacogenomic efforts are underway to

allow better disease appearance prediction (facilitating preventative steps or treat

ments) and to determine how any particular patient will respond to a given drug. In

time, therapies tailored to small patient subgroups, even individuals, will become
favored although present economic trends do not support this direction. Unable to

make large-market drugs sustainable, personalized medicine cannot be accom

plished by today s drug industry. However, gene-based medicine offers a tantalizing

solution: change the informational content of each drug, not the drug itself. With
DNA-based treatments, or gene therapies, the chemical entity remains the same,
while the biological effects it can produce in cells changes. DNA may prove an effi

cient drug, inexpensive to make and modify, with a range of delivery options.

Synthetic design software, connected to an open, integrated dataset, could quickly
evolve to facilitate the fabrication of custom health solutions for small populations or

individuals. This capability will likely bring about large changes to the way drugs are

currently tested in clinical trials: customized drugs could be tested only on the indi

viduals for whom they were designed, who would presumably be agreeable to their

use. New medicines could be quickly delivered to those in need. Even without broad

clinical trials, gene-based drugs should prove very safe and reliable as test data is

accumulated. Flaws with a genetic design would be excluded by software from hap
pening again, and any complications would naturally be isolated to very small patient

populations. Open source personalized medicine could also bring some legal relief to

drug companies. With an open, software-based drug development system, class

action lawsuits against synthetic drug manufacturers would be highly unlikely except
in cases of outright negligence or fraud.

Future Trends in Open Source Biology *
*
295

In summary, the concept of OSB is highly compelling. Focusing collaborative ener

gies on the rapid and inexpensive development, synthesis, and testing of innovative

biological products is a commanding vision. The potential of open genomics, with

countless applications in medicine, agriculture, and environmental protection, is

enormous but so are the challenges to society. Familiar ideas and structures may
need to be discarded before forward steps can be taken. Large changes in how scien

tific information is shared, new drugs are designed and tested, and knowledge is pro

tected are sure to come. As we advance toward this future, tapped into a vast global

web of information, we may find ourselves worrying much less about the ownership

of old ideas and more about how to generate the next new one.

296
*
C Open Source Biology

b CHAPTER 19

Eugene Kim

Everything Is Known

In Gabriel Garcia Marquez s epic novel, One Hundred Years of Solitude, Aureliano

Buendia spends his days and nights in an old alchemical laboratory, isolated from the

rest of the world, his nose buried in books. While Aureliano mostly keeps to himself

and says little, he occasionally surprises members of his family or his small group of

friends with a fact or insight they would have expected from someone more worldly.
When they ask him how he could possibly have known about something, he

responds simply, "Everything is known."

It s a fascinating thesis, one that not only highlights our individual ignorance, but

also suggests a different approach to pursuing knowledge. When we are faced with

something that is new to us, we often forge ahead blindly, learning and creating as

we go along. We usually call this process "innovation." Our use of this word sug

gests that we place high value on uniqueness, on things we think have not happened
before. However, how often are we qualified to determine whether something is

new? How much do most of us know about our past or about the past of others?

More importantly, if something is profound and relevant and significant, who cares if

it s new? It s far more interesting if it s been discovered repeatedly in many different

contexts. We should take note of important new ideas, but we should cherish ideas

that prove their importance over and over again.

Many people find the emergent, collaborative aspects of free and open source software

fascinating and compelling. However, before we start labeling anything as "innovative,"

we ought to seek what is already known by examining emergent collaboration in other

,07Z97

contexts and by identifying recurring patterns there. If we can find patterns that occur

over and over again in all these contexts, we can apply this knowledge to other areas.

Simply put, these patterns can improve our ability to work together regardless of the

domain, a skill on which the future of our world depends.

This chapter examines two stories: the PACT compiler project in the mid-1950s

the first collaborative software effort to transcend organizational boundaries and

the recovery effort at the site of the World Trade Center following the tragedy on

September 11, 2001. On the surface, these stories seem very different, but closer

examination reveals several common patterns, patterns that are also found in suc

cessful free and open source software projects. These patterns suggest principles for

facilitating emergent collaboration in many different contexts, from software develop

ment to grass-roots politics.

The PACT Project

If you examine open source projects closely, you will discover a deeply embedded

culture of collaboration, a culture that is embodied in the community s tools and

practices. Programmers gather in a variety of contexts, both physically (conferences,

user group meetings, code sprints) and virtually (mailing lists, IRC channels). Their

toolkits are stocked with software for sharing, documenting, and collectively author

ing code. The very notion of reusable source code is an implicit invitation to collabo

rate. Most programmers take this culture for granted, but these tools and norms did

not always exist. They can be traced as far back as 1954, to an early collaborative

compiler project known as PACT.

The onset of the Cold War in the late 1940s created a burgeoning aerospace indus

try in Southern California, and the companies that emerged suffered from a common

affliction: a lack of good programmers. Computers were barely a decade old at this

point, and programming was difficult and expensive. The notion of sharing source

code was laughable, partially because the notion of source code barely existed. There

were no high-level programming languages. Most people wrote software in machine

language, which meant that software written for one type of machine could not be

transferred to another. Although some people wrote homegrown assemblers and

interpreters to ease their programming burden, there were no standards, so code

sharing was still impossible. Without high-level languages, programming was expen

sive. Without the ability to share code, collaborating on software projects outside of

one s organization was technically infeasible.

To make matters worse, there were only about 1,000 programmers in the United

States at the time (Campbell-Kelly, 193). As a result, companies regularly raided each

other s talent, which led to greater secrecy within companies about their computer-

related work and a general tightfistedness with their prized programmers. While the

technical barriers to collaboration were large, the culture of secrecy was the biggest

impediment. R. Blair Smith, an IBM salesman, observed this culture firsthand in the

298 ^ C Everything Is Known

early 1950s. He watched each of his customers struggle with the same expense and

difficulty of developing software, and he decided that the overlap in effort was silly.

If these companies would just set aside their differences and work together to sim

plify programming for everyone, everyone would win. As obvious as this seemed to

Smith, he was realistic. Collaboration made sense, but it wasn t going to happen
unless the culture of secrecy shifted radically.

Smith decided to throw a party. He invited all of his customers to dinner on November

15, 1952, at the Santa Inez Inn in Santa Monica, California (Mapstone, 367). The

evening did not begin well. His guests were not used to interacting with their competi

tors, and the tension was thick. Smith decided something drastic was in order, so he

decided to do something that neither he nor any of his IBM colleagues had ever done

before. He bought drinks for his guests, compliments of IBM. Several rounds later, the

tension had been replaced by good spirits, and the party began in earnest.

Little was gained other than a new sense of camaraderie, consensus regarding a sec

ond gathering, and the largest expense sheet Smith ever submitted to IBM. Smith

stopped picking up the dinner and drinks tabs, but the meetings continued. The

group was expanded, and a name was chosen the Digital Computers Association

(DCA). Speakers were invited to discuss various technical topics, but the real value

of the meetings stemmed from the camaraderie. The atmosphere was jovial and

irreverent, and the predinner cocktails quickly became the most important aspect of

the meeting. As with the first gathering, little of tangible value was accomplished.

However, two important things did happen. First, the members made a tacit gentle

man s agreement not to raid each other s programmers (Carlson, 66). Second,

bringing people with similar interests from different companies together made them

recognize the commonality of their computing problems and the possible benefits

of intercompany collaboration.

The first to test the possibility of these benefits were two DCA stalwarts, Jack Strong
and Frank Wagner, both from North American Aviation. Concerned as always with

the high cost of programming and the performance overhead of interpretive systems,

Strong and Wagner wanted to explore automatic programming as a way of address

ing these issues. On November 16, 1954, Strong and Wagner organized a meeting
held at Douglas Aircraft Company s El Segundo plant (Melahn, 267). With represen
tatives from five different companies North American Aviation, Douglas Aircraft

Company, IBM, Ramo-Woolridge, and the RAND Corporation in attendance,

Strong and Wagner proposed a cooperative effort to develop an automatic coding

system for the IBM 701. The group agreed to establish two committees to undertake

the project, the Policy Committee and the Working Committee, with each participat

ing company committing one full-time representative to the project. Calling them

selves Project for the Advancement of Coding Techniques, or PACT, the group
decided to meet and work at the RAND Corporation, which was considered neutral

territory among these competing interests.

The PACT Project ^ * 289

The working committee immediately ran into trouble with language and culture.

Wesley Melahn, a participant from RAND, wrote, "People
didn t really know their

neighbors systems well enough to be able to talk about them intelligently, much less

to understand the subtle pressures that made small points seem important enough to

argue about" (Melahn, 268). Paul Armer, another important contributor, added:

The members of the working committee of PACT spent several weeks in mutual

education, because at first they had to overcome the "our way is best" attitude

and also a serious language problem. That this mutual education led to mutual

admiration and respect for other people s abilities is testified to by the final

report of the PACT-I working committee. I quote from their Primary recommen

dation: "The spirit of cooperation between member organizations and their rep

resentatives during the formulating of PACT-I has been one of the most valu

able resources to come from the project. It is essential that this spirit of

cooperation continue with future project plans" (Armer, 125).

The collaboration ultimately resulted in the first software developed cooperatively by

employees of several different companies: a working compiler that went through two

versions, PACT-I and PACT-II. The group also delivered a series of papers at the

1955 Meeting of the Association of Computing Machinery (ACM) in Philadelphia.

More importantly, PACT was a watershed. As a standard compiler that many compa

nies used, it removed the technical barrier to collaborating on software projects.

PACT also demonstrated the feasibility of a cooperative coding project and affirmed

the value of cooperation, transforming the culture of business computing and creat

ing a climate conducive to further collaboration.

Some of the similarities between PACT and today s free and open source projects are

obvious. For example, neutral space is critical for encouraging emergent collaboration.

R. Blair Smith s party would not have had the same effect had he worked for one of

those aerospace firms rather than for IBM. Similarly, it was no accident that PACT par

ticipants chose to meet at RAND. Neutral space manifests itself in a number of ways in

free and open source projects. When Linus Torvalds, the creator of the wildly success

ful Linux operating system, graduated from the University of Helsinki, he chose not to

accept a job at one of the many emerging Linux distribution companies to maintain his

neutrality. Although companies are not required to give up ownership of their code to

make their software open source, many choose to transfer their copyright to neutral

bodies, such as the Free Software Foundation and the Apache Software Foundation.

For collaboration to emerge, there must be a culture of collaboration. Prior to PACT,

that culture did not exist. Fostering it required many gatherings and a large drink

bill, courtesy of IBM. Those gatherings did not result in concrete deliverables, but

they helped establish shared understanding and shared language. The culture of col

laboration within successful free and open source projects is so deeply engrained

among their participants, it s often taken for granted. Projects that simply release

source code under an open source license in the absence of this culture usually fail.

300 ^ C Everything Is Known

The World Trade Center Recovery Effort

R. Blair Smith s dinner party in 1952 helped catalyze a shift in culture among the

business computing community, but it still took two years before it manifested in a

concrete project. The terrorist attacks on the morning of September 11, 2001 caused

a far more immediate and visceral transformation. The collapse of the World Trade

Center not only killed 3,000 people, it also brought fear and uncertainty to the entire

United States. Nobody knew who was responsible, how it had happened, or worst of

all, what to expect next. The only thing we knew was that there had been an attack

and that our lives would never be the same.

That was all the residents of New York needed to know. As soon as the towers col

lapsed, those who were at the site began a concerted rescue and recovery effort. The

impulse to help after such a horrific tragedy was not surprising, but the collaborative

process that emerged from this initial impulse was remarkable. William Langewie-

sche, a correspondent for The Atlantic, was on hand from the beginning, and in his

book, American Ground, he described the intense motivation shared among those

who participated in the recovery:

Throughout the winter and into the spring the workers rarely forgot the original

act of aggression, or the fact that nearly 3,000 people had died there, including
the friends and relatives of some who were toiling in the debris. They were

reminded of this constantly, not only by the frequent discovery of human

remains, and the somber visits from grieving families, but also by the emotional

response of America as a whole, and the powerful new iconography that was

associated with the disaster these New York firemen as tragic heroes, these

skeletal walls, these smoking ruins as America s hallowed ground. Whether cor

rectly or not, the workers believed that an important piece of history was play

ing out, and they wanted to participate in it often fervently, and past the point
of fatigue. From the start that was the norm (Langewiesche, 9).

The recovery effort consisted of two parts: recovering the remains of the dead, and

restoring the site. This latter task was literally and figuratively enormous. Each tower

had stood 110 stories high, almost a quarter of a mile each. The collapse had created a 1 .

5-million-ton labyrinth of steel and concrete over 17 acres, with hazards hidden every
where. The six-story-deep foundation and the entire New York subway system was in

danger of being flooded by the Hudson River, thanks to a damaged subway tube and a

fragile slurry wall protecting the foundation. Most dangerous of all was the under

ground chiller plant, which had cooled all of the buildings and which the collapse had
rendered inaccessible. The plant contained 168,000 gallons of freon, and nobody knew
the status of that gas. If the freon containers had somehow survived the collapse and if

the workers inadvertently damaged it in the recovery process, the gas would immedi

ately escape, displacing the air and suffocating those working underground. Addition

ally, if that gas caught fire, it would become a mustard gas-like chemical that would

pose a threat to the entire city. As if navigating through the wreckage carefully for their

The World Trade Center Recovery Effort X 301

own safety and the safety of the city weren t enough, the workers also had to sift through

it carefully for remains of the victims and for potential evidence that could shed light on

the tragedy.

Thousands of volunteers had converged onto the scene immediately following the

attacks, looking to help in whatever way they could. However, those volunteers

could do little, and after the first few days, the vast majority of them were turned

away. The only volunteers who were allowed to stay were members of the Red Cross

and Salvation Army who fed the workers. The recovery effort required expertise and

plenty of heavy machinery. There were national and city plans for responding to

disasters of all sorts, including terrorism, that prescribed the procedures and hierar

chies for requisitioning the necessary resources. However, those organizational charts

were scrapped, and the plans were never executed. Langewiesche explained:

The problems that had to be solved were largely unprecedented. Action and

invention were required on every level, often with no need or possibility of ask

ing permission. As a result, within the vital new culture that grew up at the

Trade Center site even the lowliest laborers and firemen were given power.

Many of them rose to it, and some of them sank. Among those who gained the

greatest influence were people without previous rank who discovered balance

and ability within themselves, and who in turn were discovered by others

(Langewiesche, 11).

Kenneth Holden and Michael Burton, top officials of New York s Department of

Design and Construction (DDC), quickly emerged as the leaders of the recovery

effort. The afternoon following the collapse, the two met and started enlisting

resources within the DDC to help with the rescue effort. Langewiesche wrote:

Holden and Burton responded tactically, with no grand strategy in mind. At the

police headquarters they discovered a telephone in a room off the temporary

command center a chaotic hall filled with officials struggling to get orga

nized and they began making calls. No one asked them to do this, or told

them to stop. One of the deputy mayors there had formally been given the task

of coordinating the construction response, but with little idea of how to pro

ceed, he had so far done nothing at all. Holden and Burton themselves were

operating blind, groping forward through the afternoon with only the vaguest

concept of the realities on the ground. The DDC s previous experience with

emergencies had been limited to a sinking EMS station in Brooklyn, caused by a

water-main break, and a structural failure at Yankee Stadium, one week before

baseball s opening day (Langewiesche, 88).

The fire and police departments and other government agencies were also frantically

coordinating their own efforts, with little communication between each group. It was

clear that these groups could not continue working in isolation, and that a collabora

tive process would be in order. However, the city decided to scrap its emergency

302X Everything Is Known

response plan in favor of the process that was already emerging. At that point, the

DDC had already bypassed the standard emergency response procedure, and Holden

and Burton had already in many ways taken charge of the effort. The city made it

official, giving the DDC, the fire department, and the police department joint control

over the cleanup effort.

As with the PACT project, neutral territory played an important role in defusing tra

ditional politics and allowing new roles to emerge. Burton commandeered a kinder

garten classroom at a nearby school and held twice-daily meetings there. Because of

the urgency of their task, they did not keep minutes or write memos. Those meet

ings were the primary nexus of communication, and everyone involved about 20

government agencies and several contractors had representatives there. Recording

devices were banned to encourage participants to voice their opinions freely. Accord

ing to Langewiesche, "Some of the participants were accomplished people with

impressive resumes, but within the inner world of the Trade Center site it hardly

mattered what they had done before. However temporarily, there was a new social

contract here, which everyone seemed to understand. All that counted about anyone
was what that person could provide now" (Langewiesche, 113).

The recovery effort was largely complete after six months, although it did not offi

cially end until a few months later. The entire 1.5 million tons of wreckage had been

properly examined and transported to a landfill on Staten Island. The site was no

longer hazardous, and the city was ready to build something new. Incredibly, despite

all of the dangers, not a single person died during the recovery process.

Comparing the World Trade Center recovery to free and open source projects may
seem far-fetched at first, but there are important similarities. For instance, most of

the recovery effort workers were financially compensated, although the plan for

doing so was not predetermined. Once the recovery process became apparent, city

officials made sure the appropriate people were paid. Similarly, writing software

requires tremendous expertise, and for a project to be sustainable, it must be able to

retain its experts. With free and open source projects, the methods of compensation
are not always explicit, nor are they always monetary, but they are there.

The most evident pattern from the World Trade Center recovery was an orientation

among participants toward action. In the free and open source software community,
there is a common saying: "scratch your own itch." That attitude also pervaded the

recovery effort. No one waited for instructions from above. People simply did what

had to be done. At the same time, the recovery effort was not devoid of process. Not

only were the participants action oriented, but they also were well coordinated,

thanks to the twice-daily meetings and culture of openness. Similarly, successful free

and open source projects employ effective and open lines of communication and

coordination.

The World Trade Center Recovery Effort X 303

Facilitating Emergent Collaboration

The similarities among PACT, the World Trade Center recovery, and free and open
source projects reveal several important patterns and lessons for facilitating emer

gent collaboration. I say facilitate, not create, because emergence implies an element

of surprise and a lack of intention and control. Process and organization exist, but

are not imposed. Patterns such as neutral territory create an environment that is per

missive, not prescriptive, and participants who are action oriented thrive in these

environments.

The defining characteristic of the World Trade Center recovery was that action

trumped everything else. The problem was constantly changing, and thus, the pro
cess had to evolve as well. Asking for permission didn t make sense in this environ

ment, because those on the ground understood the problem better than anyone

holding traditional authority. City leaders recognized this and deliberately chose to

rubber-stamp the process that emerged, instead of imposing a written plan that was

clearly not suited to the problem. Similarly, PACT did not happen because the lead

ers of the different companies came together and decided to collaborate on a project.

PACT happened because those who would most benefit from collaboration the

software developers began to trust each other and identified a common need. These

same developers agreed on a representative governance model with a consensus-

based decision-making approach. While not as freewheeling as the Trade Center

recovery process, it still emphasized exploration by all of its members, and its lead

ers were especially proactive. The PACT process had to be slower and more delibera

tive by design, because the motivation to collaborate was nascent. Participants had to

see collaboration work before they became comfortable with it, which meant that the

process evolved slowly.

Another prerequisite for emergent collaboration is an emphasis on open, effective

communication. Effective communication begins with shared language. When the

PACT project began, different participants had different understandings of the same

words, and communication was rendered ineffective. Before the PACT participants

could even start thinking about software, they had to understand each other s world

views and language. Shared language was not an issue with the World Trade Center

recovery. Everyone had a vivid picture of what had happened, and what needed to

be done. However, while the recovery effort was highly individualistic, coordination

was imperative, and hence, those twice-daily meetings among all participants were

critical. Banning recording devices encouraged participants to express their feelings

openly. Good communication is the hallmark of the best free and open source

projects. Anyone may participant in a forum, and core participants respond to ques

tions quickly. Active projects often summarize online discussion on a regular basis so

that others can follow high-volume discussions without being overwhelmed. Most

importantly, there is a shared language among those who participate, some of which

is embodied in the various free and open source licenses.

304 * C Everything Is Known

All of these elements are necessary for collaboration to emerge, but they are not suffi

cient. Culture is critical. The strong desire to collaborate among those who partici

pated in the World Trade Center recovery was a direct result of its unique circum

stances and scale. With PACT, the incentives and environment were not powerful

enough to establish a culture of collaboration, and rightfully so. You cannot reason

ably expect a software project to inspire the same emotion as an act of terror and the

tragic loss of life. Instead, the instigators of PACT had to nurture that culture every

step of the way, beginning by bringing the groups together to break bread and to dis

cover commonalities for themselves. The seedlings of community camaraderie

among those with shared interests and goals catalyzed a culture of collaboration,

and every instance of successful collaboration further reinforced that culture.

We have limited control over emergent collaboration, and we must adjust our expec

tations accordingly. However, the patterns we discover by examining stories such as

PACT and the World Trade Center recovery help us understand how we can facili

tate emergent collaboration. These stories were very different, yet their commonali

ties are striking, especially in light of what we already know about free and open

source software development. Perhaps everything is not known, but we can learn

much from knowing what is. The most important lesson is that the best way to

understand collaboration is to collaborate.

Acknowledgments

Thanks to Chris Dent, H. Jessica Kim, and Mark Stone for their insightful comments.

References

Paul Armer, "SHARE A Eulogy to Cooperative Effort." Annals of the History of Com

puting 2, no. 2, April 1980: 122-129.

Martin Campbell-Kelly and William Aspray, Computer: A History of the Information

Machine (New York, NY: BasicBooks, 1996).

Walter M. Carlson, "The Life and Times of the Digital Computers Association (DCA)."

Annals of the History of Computing 18, no. 2, Summer 1996: 63-66.

William Langewiesche, American Ground: Unbuilding the World Trade Center (New

York, NY: North Point Press, 2002).

Bobbi Mapstone and Morton I. Bernstein, "The Founding of SHARE: NCC 80 Pio

neer
Day."

Annals of the History of Computing 2, no. 4, Fall 1980: 363-372.

Wesley S. Melahn "A Description of a Cooperative Venture in the Production of an

Automatic Coding System. "Journal of the ACM 3, Oct. 1956: 266-271.

Acknowledgments
*
305

b CHAPTER 20

Larry Sanger

The Early History of Nupedia and

Wikipedia: A Memoir

An impassioned debate has been raging, particularly since about the summer of

2004, concerning the merits of Wikipedia and the future of free online encyclope
dias. This discussion has not benefited by much detailed, accurate consideration of

the origins of Wikipedia and of its parent project, Nupedia. Yet those origins are cru

cial to forming a proper judgment of the current state and best future direction of

free encyclopedias.

Wikipedia as it stands is a fantastic project; it has produced enormous amounts of

content and thousands of excellent articles, and now, after just four years, it is get

ting high-profile, international recognition as a new way of obtaining at least a rough
and ready idea about many topics. Its surprising success may be attributed, briefly, to

its free, open, and collaborative nature.

This has been my attitude toward Wikipedia practically since its founding. But in late

2004, I wrote an article critical of certain aspects of the Wikipedia project, "Why

Wikipedia Must Jettison Its Anti-Elitism,"
1 which occasioned much debate. I have

also been quoted, as co-founder of Wikipedia, in many recent news articles about the

project, making various other critical remarks. I am afraid I am getting an unde

served reputation as someone who is opposed to everything Wikipedia stands for.

This is completely incorrect. In fact, I am one of Wikipedia s strongest supporters. I

1 Posted December 31, 2004, at http://www.feuro5hin.org/story/2004/J2/30/H2458/25. All URLs in

this chapter were accessed April 5, 2005.

am partly responsible for bringing it into the world (as I will explain), and I still love

it and want only the best for it. But if a better job can be done, a better job should be

done. Wikipedia has shown fantastic potential, and it is open content and so if the

project has aspects which will keep it from being the maximally authoritative, broad,

and deep reference that I believe it could be, I firmly believe that the world has the

right to, and should, improve upon it.

Wikipedia s predecessor, which I was also employed to organize, was Nupedia.

Nupedia aimed to be a highly reliable, peer-reviewed resource that fully appreciated

and employed the efforts of subject-area experts, as well as the general public. When
the more free wheeling Wikipedia took off, Nupedia was left to wither. It might

appear to have died of its own weight and complexity. But, as I will explain, it could

have been redesigned and adapted it could have, as it were, "learned from its mis

takes" and from Wikipedia s successes. Thousands of people who had signed up and

who wanted to contribute to the Nupedia system were left disappointed. I believe

this was unfortunate and unnecessary; I always wanted Nupedia and Wikipedia

working together to be not only the world s largest but also the world s most reliable

encyclopedia. I hope that this memoir will help to justify this stance. Hopefully, too,

I will manage to persuade some people that collaboration between an expert project

and a public project is the correct approach to the overall project of creating open

content encyclopedias.

I am not writing to request that Nupedia be resuscitated now, as nice as that would

be. But I would like to tell the story of Nupedia and the first couple of years of Wiki

pedia as I remember it. I present this as a memoir a personal view not as an

authoritative history. The "overall project of creating open content encyclopedias" is

something about which I have been writing since at least 2001. For example, in July

2001, while still working on both Wikipedia and Nupedia, I wrote, "If some other

open source project proves to be more competitive, then it should and will take the

lead in creating a body of free encyclopedic knowledge."
2 Since Wikipedia is open

content and hence may be reproduced and improved upon by anyone, I have always

been cognizant that it might not end up being the only or best version. My personal

devotion has always been to the ideal project as I have envisioned it, not necessarily

to particular incarnations of Nupedia or Wikipedia; and I think this attitude is fully

consistent with the (very positive) spirit of open source collaboration generally.

This being said, let me also emphasize strongly that, throughout this discussion, I am

not suggesting that Wikipedia needs to be replaced with something better. I do, how

ever, think that it needs to be supplemented by a broader, more ambitious, and more

inclusive vision of the overall project.

2 "Britannica or Nupedia? The Future of Free Encyclopedias," posted July 25, 2001, at http://

www. kuro5hin.Org/story/2001/7/25/l 03 1 36/1 2 1 .

308 ^ C The Early History of Nupedia and Wikipedia: A Memoir

Some Recent Press Reports

This memoir seems all the more important to publish now because the early history

of Nupedia and Wikipedia has been mischaracterized in the press recently. If there

were only a few inaccuracies, which made no difference, I would be happy to leave

well enough alone. But some of the mischaracterizations I ve seen do make a differ

ence. They give the public the impression that Nupedia failed because it was run by
snobbish experts whose standards were too high. As I will make clear, that is not cor

rect. One might also gather from some reports that the idea for Wikipedia sprang

fully grown from Jimmy Wales head. Jimmy, of course, deserves enormous credit for

investing in and guiding Wikipedia. But a more refined idea of how Wikipedia origi

nated and evolved is crucial to have, if one wants to appreciate fully why it works

now, and why it has the policies that it does have.

For example, in the November 1, 2004 issue of Newsweek, in "It s Like a Blog, But It s

a Wiki,"
3
reporter Brad Stone writes:

[Jimmy] Wales first tried to rewrite the rules of the reference-book business five

years ago with a free online encyclopedia called Nupedia. Anyone could submit

articles, but they were vetted in a seven-step review process. After investing

thousands of his own dollars and publishing only 24 articles, Wales reconsid

ered. He scrapped the review process and began using a popular kind of online

Web site called a
"wiki," which allows its readers to change the content.

This capsule history is, of course, very brief and so should be expected not to have

every relevant detail. But some of the claims made here are not just vague, they are

actually misleading, and so several clarifications are in order:

The article makes it sound as ifJimmy were the only person making the relevant

decisions. That is incorrect; the Nupedia system (indeed, seven steps) was estab

lished via negotiation with Nupedia s volunteer Advisory Board, mostly Ph.D.

volunteers, who served as editors and peer reviewers. I articulated our decisions

in Nupedia s "Editorial Policy Guidelines."4 Jimmy started and broadly autho

rized it all, but as to the details, he really had little to do with them.

Nupedia s Advisory Board might be surprised to learn that Jimmy "scrapped the

review
process." Jimmy was certainly disappointed with the process (as were

many people), and he did not actively support it after 2001 or so. But in fairness

to the people actually working on Nupedia, the fact is that work on Nupedia

gradually petered out in 2001-2002. I in particular was stretched thin in 2001,
I was both chief organizer of Wikipedia and editor in chief of Nupedia and my

3 http://www.msnbc.msn.com/id/6298340/site/newsweek.
4 A version of "Nupedia.com Editorial Policy Guidelines" from 2001 can be found at http://

web.archive.org/web/20010607080354/www.nupedia.com/policy.shtml.

Some Recent Press Reports * 309

own slowing work on Nupedia was obvious to all active Nupedia contributors. It

might be better to say that Nupedia withered due to neglect which was largely

due to a lack of sufficient funds for paid organizers which was as much due to

the bursting of the Internet bubble as anything else.

Also, to the best of my knowledge, the "thousands of his own dollars" invested in

these projects were, if I am not very mistaken, the dollars of Bomis.com, which is

jointly owned by three partners: Jimmy, Tim Shell, and Michael Davis. (The

money for Wikipedia now comes from donations.) But again, Jimmy was the

prime motivating force within Bomis.

Moreover, Nupedia had fewer than 24 articles when Wikipedia launched, being

not quite a year old at that time. The idea of adapting wiki technology to the task

of building an encyclopedia was mine, and my main job in 2001 was managing

and developing the community and the rules according to which Wikipedia was

run. Jimmy s role, at first, was one of broad vision and oversight; this was the man

agement style he preferred, at least as long as I was involved. But, again, credit goes

to Jimmy alone for getting Bomis to invest in the project and for providing broad

oversight of the fantastic and world-changing project of an open content, collabo-

ratively built encyclopedia. Credit also of course goes to him for overseeing its

development after I left, and guiding it to the success that it is today.

A March 2005 Wired Magazine article by Daniel Pink also got a number of things

wrong, despite being, in other respects, an excellent article: 5

With Sanger as editor in chief, Nupedia essentially replicated the One Best Way
model. He assembled a roster of academics to write articles. (Participants even

had to fax in their degrees as proof of their expertise.) And he established a

seven-stage process of editing, fact-checking, and peer review. "After 18 months

and more than $250,000," Wales said, "we had 12 articles."

Then an employee told Wales about Wiki software. On January 15, 2001, they

launched a Wiki-fied version and within a month, they had 200 articles. In a

year, they had 18, 000.... Sanger left the project in 2002. "In the Nupedia mode,

there was room for an editor in chief," Wales says. "The Wiki model is too dis

tributed for that."

This too needs clarifications:

The "roster of academics" (the aforementioned Nupedia Advisory Board) was not

limited to academics; they were experts in their fields, in any case. Moreover,

they were editors and peer reviewers; the general public was able to propose and

write articles on subjects about which they had some knowledge.
6

5 "The Book Stops Here," http://www.wired.com/wired/archive/13.03/wiki.html.

6 Consult the 2001 assignment policy if you are interested: http://web.archive.org/web/

20010607080354/http://www.nupedia.com/policy.shtml#assignment.

310
*
C The Early History of Nupedia and Wikipedia: A Memoir

It is incorrect to say that participants had to fax their degrees as proof of their

expertise; we did verify bona fides by matching the names and email addresses of

editors and reviewers with a web page often, but not always, an academic web

page. Indeed there was one (but only one) case that I recall in which I asked

someone, who had no web page or any other easy way to prove who he was, to

fax a degree. Verifying bona fides seemed like a good idea especially when ini

tially building what was to be an academically respectable project.

Again, I did not establish the editorial process alone; I had considerable assis

tance (for which I am still grateful) from Nupedia s excellent Advisory Board.

And as I wrote on July 25, 2001 for Kuro5hin, 7
Nupedia had

"just
over 20" arti

cles not 12 after 18 months. We always suspected that we would wind up

scrapping our first attempts to design an editorial system, and that we would

learn a great deal from those first attempts; and that s essentially what hap

pened. But Nupedia could have evolved, and would have, had we continued

working on it.

The second paragraph begins, "Then an employee told Wales about Wiki soft

ware." I don t know how Jimmy first learned about wikis, but as I will explain, I

proposed to him and to the Nupedia community at large that we start a wiki-

based encyclopedia.

The context of the line
"Sanger

left the project in 2002" particularly with Jimmy
quoted as saying, "In the Nupedia mode there was room for an editor in chief

makes it sound as if I were let go specifically because I was working only on Nupe
dia and was no longer needed for that. In fact, I was working on Wikipedia far

more at the time than Nupedia, and the reason for my departure from both

projects was that Bomis was, like virtually all dot-corns, losing money. They could

not afford to pay me; I was told that I was the last of several newer Bomis employ
ees to be laid off on account of the tech recession. But Wikipedia indeed was able

to continue on without me, and I agreed even at the time that Wikipedia could

survive without me, and that it had become essentially "unmanageable."

In view of such problematic reporting, considering the rather good chance that Wiki

pedia will become historically important, and considering that the planners of related

projects might find some value in this, I want to tell my story as I remember it. This

memoir covers only the first few years of the project. I have followed the project

fairly closely and with interest after my departure, but silently and from the sidelines.

Nupedia

I m going to begin with Nupedia. The origin of Wikipedia cannot be explained

except in that context. Moreover, the Nupedia project itself was very worthwhile,

7 "Britannica or
Nupedia?" op. cit.

Nupedia X 311

and I think it might have been able to survive, as I will explain. Finally, some errors

regarding Nupedia have been passed around although they are little more than

unfounded rumors. It is unfortunate that the thousands of hours of excellent volun

teer work done on Nupedia should be thus disrespected or grossly misunderstood. I

personally will always be grateful to those initial contributors who believed in the

project and our management, worked hard for a completely unproven idea, and laid

the groundwork for the growing institution of open content projects.

In 1999, Jimmy Wales wanted to start a free, collaborative encyclopedia. I knew him

from several mailing lists back in the mid- 90s, and in fact we had already met in per

son a couple of times. In January 2000, I emailed Jimmy and several other Internet

acquaintances to get feedback on an idea for what was to be, essentially, a blog. (It

was to be a successor to
"Sanger

and Shannon s Review of Y2K News
Reports,"

a Y2K

news summary that I first wrote and then edited.) To my great surprise, Jimmy

replied to my email describing his idea of a free encyclopedia, and asking if I might

be interested in leading the project. He was specifically interested in finding a philos

opher to lead the project, he said. He made it a condition of my employment that I

would finish my Ph.D. quickly (whereupon I would get a raise) which I did, in

June 2000. I am still grateful for the extra incentive. I thought he would be a great

boss, and indeed he was.

To be clear, the idea of an open source, collaborative encyclopedia, open to contribu

tion by ordinary people, was entirely Jimmy s, not mine, and the funding was entirely

by Bomis. I was merely a grateful employee; I thought I was very lucky to have a job

like that land in my lap. Of course, other people had had the idea; but it was Jimmy s

fantastic foresight actually to invest in it. For this the world owes him a considerable

debt. The actual development of this encyclopedia was the task he gave me to work on.

I arrived in San Diego in early February 2000 to get to work. One of the first things I

asked Jimmy was how free a rein I had in designing the project. What were my con

straints, and in what areas was I free to exercise my own creativity? He replied, as I

clearly recall, that most of the decisions should be mine; and in most respects, as a

manager, Jimmy was indeed very hands-off. I spent the first month or so thinking

very broadly about different possibilities. I wrote quite a bit (that writing is now all

lost that will teach me not to back up my hard drives) and discussed quite a bit

with both Jimmy and one of the other Bomis partners, Tim Shell.

I maintained from the start that something really could not be a credible encyclopedia

without oversight by experts. I reasoned that, if the project is open to all, it would

require both management by experts and an unusually rigorous process. I now think I

was right about the former requirement, but wrong about the latter, which was

redundant; I think that the subsequent development of Wikipedia has borne out of

this assessment.

312
*
C The Early History of Nupedia and Wikipedia: A Memoir

One of the first policies that Jimmy and I agreed upon was a "nonbias" or neutrality

policy. I know 1 was extremely insistent upon it from the beginning, because neutral

ity has been a hobbyhorse of mine for a very long time, and one of my guiding prin

ciples in writing "Sanger
s Review." Neutrality, we agreed, required that articles

should not represent any one point of view on controversial subjects, but instead

fairly represent all sides. We also agreed in rejecting an alternative that (for a time)

Tim and some early Nupedians plugged for: the development, for each encyclopedia

topic, of a series of different articles, each written from a different point of view.

I believed, moreover, that a strongly collaborative and open project could not sur

vive if its contributors were not "personally invested" in the project, and that this

required some input and management by its users. It was very early on that I decided

that Nupedia should have an Advisory Board editors, and peer reviewers, who

would together agree to project policy and that the public should have a say in the

formulation of policy.

An early incarnation of Nupedia s Advisory Board was in place by summer of 2000 or

so. It was made up of the project s highly qualified editors and reviewers, mostly Ph.D.

professors but also a good many other highly experienced professionals. Eventually the

Advisory Board agreed to an extremely rigorous seven-step system. A lot of the details

of the Nupedia policy and processes were proposed by me, but then tweaked and elabo

rated by others, and the policy was not published as project policy until we had a quo
rum of editors and peer reviewers who could fully discuss and approve of a policy

statement. Even so, our policy overlooked a fundamental problem. We should not have

assumed that such a complex system could be navigated patiently by many volunteers.

I spent significant time recruiting people for Nupedia, emailing new arrivals, posting

to mailing lists, giving interviews, and so on. I had had some experience publicizing

Internet projects when I worked on several philosophy discussion groups as a gradu
ate student in the 1990s and I knew that getting many willing and active partici

pants was difficult but important. I even had an administrative assistant for six

months in 2000 and 2001, Liz Campeau, whose sole job was to recruit people to

work on Nupedia and then Wikipedia. I think a large part of the reason Wikipedia

got off the ground so quickly and so well is that it was started by Nupedians, who
were then a very large base of people who wanted to work on an encyclopedia, and

who had many definite ideas about how it should be done. Roughly 2,000 Nupedia
members were subscribed to the general announcement list in January 2001 when

Wikipedia launched. We operated the system initially using email and mailing lists,

while planning and finalizing process details. That lasted from spring through fall

2000. I think our first article
("atonality" by Christoph Hust), that made it entirely

through the system, was published in June or July 2000. To move the system to a

completely web-based one, there was, of course, a great deal of design and program

ming to do. So in fall of 2000, I worked a lot with a programmer (Toan Vo) and the

Nupedia X 313

Bomis sysadmin (Jason Richey) to transfer the system from a clunky mailing list sys

tem to the Web. But by the time the web-based system was ready it had become

obvious to Jimmy and me that the seven-step editorial process would move too

slowly, even when managed on the Web. But Magnus Manske later, in 2001, made

some very nice additions to the Nupedia system.

Some institutional traditions begin easily but die hard. Nupedia s Advisory Board was

reluctant to seriously consider a simpler system, despite months of coexistence and

uncomfortable comparison between Nupedia and Wikipedia. Nupedia editors and

peer reviewers had a very strong commitment to rigor and reliability, as did I. More

over, as Wikipedia became increasingly successful in 2001, Jimmy asked me to

spend more and more time on it, which I did; Nupedia suffered from neglect. It

wasn t until summer of 2001 that I was able to propose, get accepted, and install

something we called the Nupedia Chalkboard. This was a wiki which was to be

closely managed by Nupedia s staff. It offered both a simpler way to develop encyclo

pedia articles for Nupedia, and a way to import articles from Wikipedia. Established

practices are hard to break, and the Chalkboard went largely unused. The general

public simply used Wikipedia if they wanted to write articles in a wiki format, while

most Nupedia editors and peer reviewers were not persuaded that the Chalkboard

was necessary or useful.

By early winter 2001, Nupedia had published approved versions of only about 25

articles, although there were dozens of draft articles at various stages in process. I

was finally able to persuade the Advisory Board to move the system to a much sim

pler two-step process, virtually identical to that used to run many academic journals:

articles would be submitted to an editor; the editor would, if the article seemed good

enough, forward it to a reviewer for acceptance or rejection; if accepted, the article

would be posted. We also contemplated various ways of allowing public comment,

moderation, and editing of posted articles. I believe this new, simpler system would

have produced thousands of articles for Nupedia very quickly. The Nupedia commu

nity was certainly interested and motivated. The Advisory Board was gradually

accepting that the system s complexity was the main obstacle to getting more articles

into and through the system.

Unfortunately, Nupedia s new system arrived too late. This system should have been

adopted in the winter of 2001-2002. At the same time, Wikipedia was demanding as

much attention as I could give it, and I had little time to implement the new Nupe
dia system. I am quite sure we could have started Nupedia in early 2002 had we

made the time. But Bomis lost the ability to pay me and, newly unemployed, I did

not have the time to lead Nupedia as a volunteer. I did not entirely lose hope on

Nupedia, however.

314 *
*

The Early History of Nupedia and Wikipedia: A Memoir

The Origins of Wikipedia

In the fall of 2000, Jimmy and I were in agreement that Nupedia s slow productivity

was probably going to be an ongoing problem and that there needed to be a way,

moreover, in which ordinary, imcredentialed people could participate more easily.

Uncredentialed people could (and did) participate in Nupedia, particularly as writers

and copy editors, but it was challenging for most of them to get articles through the

elaborate system. We had a huge pool of talent, motivated to work on an encyclope-

dia but not motivated enough to work on Nupedia, going to waste.

It was my job to solve these problems. I wrote multiple detailed proposals for a sim

pler, more open editing system and I ran them by Jimmy. His reply to all of them

was that it would require too much programming, and he couldn t afford to pay
more high-priced programmers. In retrospect, of course, I realize that we could have

found a way to enlist volunteers to develop the system. Jimmy and I both probably

knew that at the time; unfortunately, we didn t pursue it.

While I was thinking hard about how to create a more open system with minimal

setup requirements, I had dinner with an old Internet friend of mine, Ben Kovitz.

Ben had moved to town for a new job and we were out at a Pacific Beach Mexican

restaurant, talking about jobs, tech stuff, and philosophy (Ben, Jimmy, and I all knew
each other from those philosophy mailing lists on which we were active). Ben

explained the idea of Ward Cunningham s WikiWikiWeb8 to me. Instantly I was

considering whether wiki would work as a more open and simple editorial system for

a free, collaborative encyclopedia, and it seemed exactly right. The more I thought
about it, without even having seen a wiki, the more it seemed obviously right. Imme

diately I wrote a proposal unfortunately, lost now in which I said that this might
solve the problem and that we ought to try it. Given that setting up a wiki would be

very simple and would not require hiring a programmer, Jimmy could scarcely

refuse. He liked the idea but was initially skeptical properly so, as I was, despite my
excitement.

Wiki advocates often point out9 that Wikipedia is nonstandard as a wiki. This is

partly because we began just with the very basic wiki concept and not so much of the

culture. Wiki culture is very distinctive. Wiki pages can be started and edited by any
one, but in Thread Mode 10

(as in "the thread of this discussion"), the dialogue
becomes complex. In that case, or when consensus is reached, or when positions

have hardened, it is considered a good idea to "refactor"
11

pages (a term borrowed

8 For an introduction, see the "Welcome Visitors" page of WikiWikiWeb: http://www.c2.com/cgi/
wiki?WelcomeVisitors.

9 Usemod.com, a wiki about wikis, has many articles that introduce the old-fashioned idea about
wikis. See "WikiPedia Is Not

Typical," http://www.usemod.com/cgi-bin/mb.plPWifeiPediaIsNotTypicaI.
10 "Thread Mode," http://www.c2.com/cgi/wifei7ThreadMode.
1 1 "What Is

Refactoring," http://www.c2.com/cgi/wifeiPWhat/sRe/actoring.

The Origins of Wikipedia * 315

from programming) i.e., to rewrite them, taking into account the highlights of the

dialog. Then the dialog might be represented in "Document Mode." 12 Opinions are

very welcome on a typical wiki. There are many other collective habits that make up

typical wiki culture; these are only a few.

However, I denied the necessity of organizing Wikipedia according to these precise

principles. To be sure, a few other participants wanted Wikipedia to adopt wiki cul

ture wholesale so that it would be
"just

another wiki," and they had some small influ

ence over the direction of the project. Still, I viewed wiki software as simply a tool, a

way to organize people who want to collaborate. I saw no necessity whatsoever to

partake in all aspects of the idiosyncratic culture that happened to be associated with

the advent of this very generally applicable tool, since we were engaged in a very spe

cific sort of project with very specific requirements. This caused some consternation

among some wiki advocates, who appeared to think that Wikipedia should, or inevi

tably would, become just another wiki, somehow necessarily partaking of typical

wiki culture. Ward Cunningham s prediction,
13 when Jimmy asked him whether

wiki software "could successfully generate a useful encyclopedia," was: "Yes, but in

the end it wouldn t be an encyclopedia. It would be a wiki." As I said in reply: "Wiki

pedia has a totally different culture from this wiki, because it s pretty single-mind-

edly aimed at creating an encyclopedia. It s already rather useful as an encyclopedia,

and we expect it will only get better."

Typical wiki culture aside, wiki software does encourage, but does not strictly require,

extreme openness and decentralization: openness, since page changes are logged and

publicly viewable, and pages may be further changed by anyone; and decentralization,

because for work to be done, there is no need for a person or body to assign work, but

rather, work can proceed as and when people want to do it. Wiki software also discour

ages the exercise of authority, since work proceeds at will on any page, and on any

large, active wiki it would be too much work for any single overseer or limited group of

overseers to keep up. These all became features of Wikipedia.

My initial idea was that the wiki would be set up as part of Nupedia; it was to be a

way for the public to develop a stream of content that could be fed into the Nupedia

process. I think I got some of the basic pages written how wikis work, what our

general plan was, and so forth over the next few days. I wrote a general proposal

for the Nupedia community, and the Nupedia wiki went live January 10. The first

encyclopedia articles for what was to become Wikipedia were written then. It turned

out, however, that a clear majority of the Nupedia Advisory Board wanted to have

nothing to do with a wiki. Again, their commitment was to rigor and reliability, a

concern I shared with them and continue to have. They evidently thought a wiki

12 "Document Mode," http://www.c2.com/cgi/wifei7DocumentMode.
13 "Wiki Pedia," http://www.c2.com/cgi/wifeiPWileiPedia.

316 *
*

The Early History of Nupedia and Wikipedia: A Memoir

could not resemble an encyclopedia at all, that it would be too informal and unstruc

tured, as the original WikiWikiWeb was, to be associated with Nupedia. They of

course were perfectly reasonable to doubt that it would turn into the fantastic source

of content that it did. Who could reasonably guess that it would work? But it did

work, and now the world knows better.

Wikipedia s First Few Months

We decided to relaunch the wiki under its own domain name. I came up with the

name
"Wikipedia,"

a silly name for what was at first a very silly project, and the

newly independent project was launched at Wikipedia.com on January 15, 2001. It

was a ".com" at first because, at the time, we were contemplating selling ads to pay

for me, programmers, and servers. It was easy to deprecate ".com" in favor of
".org"

in 2002, after Jimmy was able to assure users that Wikipedia would never run ads to

support the project.

I took it to be one of my main jobs to promote Wikipedia, and this resulted in a

steady influx of new participants. I wrote on the Wikipedia announcement page Jan

uary 24, "Wikipedia has definitely taken [on] a life of its own; new people are arriv

ing every day and the project seems to be getting only more popular. Long live Wiki

pedia!" By the end of January, we reportedly
14 had 600 articles; there were 1,300 in

March, 2,300 in April, and 3,900 in May. Not only was the project growing steadily,

but the rate of growth was also increasing.

Wikipedia started with a handful of people, many from Nupedia. The influence of

Nupedians was crucial early on. I think, especially, of the tireless Magnus Manske

(who worked on the software for both projects), our resident stickler Ruth Ifcher,

and the very smart poker-playing programmer Lee Daniel Crocker to name a few.

All of these people, and several other Nupedia borrowings, had a good understand

ing of the requirements of good encyclopedia articles, and they were intelligent,

skilled writers. The direction that Wikipedia ought to go in seemed obvious to us all,

in terms of what sort of content we wanted. But what we did not have worked out in

advance was how the community should be organized, and (not surprisingly) that

turned out to be the thorniest problem. Still, because the project started with these

good people, and we were able to adopt, explain, and promote good habits and poli

cies to newer people, the Nupedian roots of the project helped to develop a robust,

functional, and successful community. As to project leadership or management, we

began with me, Jimmy, and Tim Shell; Tim mostly stopped participating after the

first few months.

14
"Wikipedia: Size of Wikipedia," http://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia.

Wikipedia s First Few Months X 317

The many rank-and-file users did the heavy lifting, and if there had not been a rea

sonable consensus among them about what the project should look like, it just

wouldn t have happened. In any collaborative project, it is the contributors who are

responsible for the outcome. Those early adopters should feel proud of themselves,

because they were essential in shaping a thing of beauty and usefulness.

I recall saying casually, but repeatedly, in the project s first nine months or so, that

experts and specialists should be given some particular respect when writing in their

areas of expertise. They should be deferred to, I thought, unless there was some clear

evidence of bias. In those first months, deference to expertise was a policy that at

least I usually insisted upon, but not strongly or clearly enough. It was nearly a year

after the project began that I finally articulated this view as a policy to consider. 15

Perhaps this was because, indeed, most users did make a practice of deferring to

experts up to that time. "This is just common sense," as I wrote, "but sometimes

common sense needs to be spelled out!" What I now think is that that point of com

mon sense needed to be spelled out quite a bit sooner and more forcefully, because

in the long run, it was not adopted as official project policy, as it could have been.

Some questions have been raised about the origin of Wikipedia policies. The tale is

interesting and instructive. We began with no (or few) policies in particular and said

that the community would determine through a sort of vague consensus based on

its experience working together what the policies would be. The very first entry on

a "rules to consider" page
16 was the

"Ignore
All Rules" rule (to wit: "If rules make you

nervous and depressed, and not desirous of participating in the wiki, then ignore

them entirely and go about your business"). This is a "rule" that I personally pro

posed. I thought we first needed experience with wikis before we could have rules

about wikis. Even more importantly at that point, we needed participants more than

we needed rules. As the project grew and the requirements of its success became

increasingly obvious, I became ambivalent about this particular "rule" and then

rejected it altogether. As one participant later commented, "this rule is the essence of

Wikipedia."
17 That was certainly never my view; I always thought of the rule as being

a temporary and humorous injunction to participants to add content instead of being

distracted by (then) relatively inconsequential issues about how exactly articles

should be formatted, etc. In a similar spirit, I proposed that contributors be bold in

updating pages.
18

15 "Deferring to the
experts," http://meta.wikimedia.org/wiki/Defernng_toJ.he_experts.

16 "RulesToConsider," http://web.archive.org/web/20010307211833/www.wikipedia.com/wiki/

Rules!oConsider.

17 "Wikipedia talklgnore all rules," http://en.wikipedia.org/wiki/Wikipedia_talk:Ignore_all_rules.

18 "Be bold in updating pages," http://web.archive.org/web/2001
1 1 1 1150732/www.wikipedia.com/

wiki/Be_bold_in_updating_jpages.

318 X The Early History of Nupedia and Wikipedia: A Memoir

I also, for similar reasons, specifically disavowed any title; 1 was organizing the

project but 1 did not want to present myself as editor in chief. I wanted people to feel

comfortable adding information without having to consult anything like an editor.

Participation was more important, I felt.

As we set it up, Wikipedia did have some minimal wiki cultural features: it was wide

open and extremely decentralized, and (provisionally, anyway) featured very little

attempt to exercise authority. Insofar as I was able to organize it at all, 1 guided the

project through force of personality and what "moral authority"
I had as co-founder

of the project. Jimmy and I agreed early on that, at least in the beginning, we should

not eject anyone from the project except perhaps in the most extreme cases. Our first

forcible expulsion (which Jimmy performed) did not occur for many months, despite

the presence of difficult characters from nearly the beginning of the project. Again,

we were learning: we wished to tolerate all sorts of contributors to be well situated to

adopt the wisest policies. However, this provisional "hands-off management policy

had the effect of creating a difficult-to-change tradition, the tradition of making the

project extremely tolerant of disruptive (uncooperative, "trolling")
behavior. And as it

turned out, particularly with the large waves of new contributors from the summer

and fall of 2001, the project became very resistant to any changes in this policy. I

suspect that the cultures of online communities generally are established pretty

quickly and then are very resistant to change, because they are self-selecting; that was

certainly the case with Wikipedia, anyway.

So, I could only attempt to shame any troublemakers into compliance; without

recourse to any genuine punitive action, that was the most I could do. In the first

eight months of the project, this was usually sufficient for me to do my job. Wikipe
dia began as a good-natured anarchy, a sort of Rousseauian state of digital nature. I

always took Wikipedia s anarchy to be provisional and purely for purposes of deter

mining what the best rules, and the nature of its authority, should be. What I, and

other Wikipedians, failed to realize is that our initial anarchy would be taken by the

next wave of contributors as the very essence of the project how Wikipedia was

"meant" to be even though Wikipedia could have become anything we the contrib

utors chose to make it.

This point bears some emphasis: Wikipedia became what it is today because, having
been seeded with great people with a fairly clear idea of what they wanted to achieve,

we proceeded to make a series of free decisions that determined the policy of the

project and culture of its supporting community. Wikipedia s system is neither the

only way to run a wiki, nor the only way to run an open content encyclopedia. Its

particular conjunction of policies is in no way natural, "organic,"
or necessary. It is

instead artificial, a result of a series of free choices, and we could have chosen differ

ently in many cases; and choosing differently on some issues might have led to a

project better than the one that exists today.

Wikipedia s First Few Months X 319

Though it began as anarchy, there were quite a few policies that were settled within

the first six months. This required some struggle, especially on my part. Since the

project was a wild, some participants thought that there should be no rules at all. But

it was made clear from the beginning that we intended Wikipedia to be an encyclope

dia, and so we pushed for at least those rules that would help define and sustain the

project as an encyclopedia.

For instance, throughout the early months, people added various content that

seemed less than encyclopedic. Many people seemed to confuse encyclopedia arti

cles with dictionary entries, and eventually I wrote a page called "Wikipedia is not a

dictionary."
19 As people found new ways not to write encyclopedia articles, 1 started

"What Wikipedia is not":
20 I and others would note on an article s discussion page

that some content did not belong in an encyclopedia, and then underscored the

point by adding an entry to the "What Wikipedia is not" page. To take another exam

ple, Wikipedia was not to be a place for publishing original research. In fact, this is a

policy that had been settled upon and even enforced in Nupedia days; enforcing it

actually led to the departure of Nupedia s erstwhile Classics editor sometime in 200 1 .

Many of our first controversies were over these restrictions. At the time, I had

enough influence within the community to get these policies generally accepted. And

if we had not decided on these restrictions, Wikipedia might well have ended up,

like many wikis, as nothing in particular. But since we insisted that it was an encyclo

pedia, even though it was just a blank wiki and a group of people to begin with, it

became an encyclopedia. There is something simple, yet profound about that. I also

like to think that we helped to show the world the potential that wikis have.

Another policy that was instituted early on was the nonbias or neutrality policy. This

was borrowed from the Nupedia project
21 and was made a Rule to Consider in a

very early version, the policy was put this way:

Avoid bias: Since this is an encyclopedia, after a fashion, it would be best if you

represented your controversial views either (1) not at all, (2) on *Debate, Talk,

or
* Discussion pages linked from the bottom of the page that you re tempted to

grace, or (3) represented in a fact-stating fashion, i.e., which attributes a particu

lar opinion to a particular person or group, rather than asserting the opinion as

fact. (3) is strongly preferred.

19 "WikipediaiWikipedia is not a dictionary," http://en.wikipedia.org/wiki/Wikipedia:Wikipedia_is_

not_a_dictionary.

20 "Wikipedia:What Wikipedia is not," http://en.wikipedia.org/wiki/Wikipedia:What_Wikipedia_is_

not.

21 "Nupedia.com Editorial Policy Guidelines," Version 3.31 (November 16, 2000), Part III,

"General Nupedia Policies," http://web.archive.0rg/web/20001205000200/http://www.nupedia.com/

policy.shtmMH.

320
*
C The Early History of Nupedia and Wikipedia: A Memoir

Jimmy then started a specialized policy page he called "Neutral Point of View."22 I con

fess I don t much like this name as a name for the policy, because it implies that to

write neutrally, or without bias, is actually to express a point of view, and, as the defi

nite article is used, a single point of view at that.
"Neutrality," "neutral," and "neutrally"

are better to use for the noun, adjective, and adverb. But the acronym "NPOV" came to

be used for all three, by Wikipedians wanting to seem hip, and then the unfortunate

"POV" came to be used when the perfectly good English word "biased" would do.

In addition to these, I suggested a number of other rules. 1 believe 1 am responsible

for the original formulations of a lot of the article-naming conventions, as well as the

conventions of holding the title of the article, starting articles with full sentences,

making article titles uncapitalized, and much else. I think these policies were just a

matter of common sense for anyone who understood what a good encyclopedia

should be like. And of course I was not the only person proposing conventions.

Moreover, actual project policy, or community habits, succeeded in being estab

lished only by being followed and supported by a majority of participants. It was

then, we said, that there was a
"rough

consensus" in favor of the policy. And consen

sus, we said, is required for a policy actually to be considered project policy. For our

purposes, a "consensus" appeared to consist of (1) widespread common practice, (2)

many vocal defenders, and (3) virtually no detractors.

But that way of settling upon policy proposals viz., by alleged consensus did not

scale, in my opinion. After about nine months or so, there were so many contribu

tors, and especially brand-new contributors, that nothing like a consensus could be

reached, for the simple reason that condition (3) in the previous paragraph was never

achievable: there would after that always be somebody who insisted on expressing

disagreement. There was, then, a nonscaling policy adoption procedure, and a cry

ing need to continue to adopt sensible policies. This led to some serious problems in

the community. But first, something more positive.

Why Wikipedia started working

This is a good place to explain why Wikipedia actually got started and why it

worked. The explanation involves several factors, some borrowed from the open
source movement, some borrowed from wiki software and culture, and some more

idiosyncratic:

Open content license

We promised contributors that their work would always remain free for others to

read. This, as is well known, motivates people to work for the good of the

world and for the many people who would like to teach the whole world, that s

a pretty strong motivation.

22 "NeutralPointOfView," http://web.archive.org/web/200104J6035757/www. wifeipedia.com/wifei/

NeutralPointO/View. For the current version, see http://en.wifeipedia.Org/wifei/Wifeipedia:NeutraL

point_o/_view.

Wikipedia s First Few Months
*

321

Focus on the encyclopedia

We said that we were creating an encyclopedia, not a dictionary, etc., and we

encouraged people to stick to creating the encyclopedia and not use the project

as a debate forum.

Openness

Anyone could contribute. Everyone was specifically made to feel welcome (e.g.,

we encouraged the habit of writing on new contributors user pages, "Welcome

to Wikipedia!" etc.). There was no sense that someone would be turned away for

not being bright enough, or not being a good enough writer, or whatever.

Ease of editing

Wikis are easy for most people to figure out. In other collaborative systems (like

Nupedia), you have to learn all about the system first. Wikipedia had an almost

flat learning curve.

Collaborate radically; don t sign articles

Radical collaboration, in which (in principle) anyone can edit any part of any

one else s work, is one of the great innovations of the open source software

movement. On Wikipedia, radical collaboration made it possible for work to

move forward on all fronts at the same time, to avoid the big bottleneck that is

the individual author, and to burnish articles on popular topics to a fine luster.

Offer unedited, unapproved contentforfurther development

This is required if one wishes to collaborate radically. We encouraged putting up

their unfinished drafts as long as they were at least roughly correct with the

idea that they can only improve if there are others collaborating. This is a classic

principle of open source software. It helped get Wikipedia started and helped

keep it moving. This is why so many original drafts of Wikipedia articles were

initially of poor quality, and also why it is surprising to the uninitiated that many
articles have turned out very well indeed.

Neutrality

A firm neutrality policy made it possible for people of widely divergent opinions

to work together, without constantly fighting. It s a way to keep the peace.

Start with a core ofgood people

I think it was essential that we began the project with a core group of intelligent,

good writers who understood what an encyclopedia should look like, and who

were basically decent human beings.

Enjoy the Google effect

We had little to do with this, but had Google not sent us an increasing amount

of traffic each time they spidered the growing web site, we would not have

grown nearly as fast as we did.

322
*
C The Early History of Nupedia and Wikipedia: A Memoir

That s pretty much it. The focus on the encyclopedia provided the task, and the open
content license provided a natural motivation: people work hard if they believe they

are teaching stuff to the world. Openness and ease of editing made it easy for new

people to join in and get to work. Collaboration helped move work forward quickly

and efficiently, and posting unedited drafts made collaboration possible. The fact that

we started with a core of good people from Nupedia meant that the project could

develop a functional, cooperative community. Neutrality made it easy for people to

work together with relatively little conflict. And the Google effect provided a steady

supply of "fresh blood" who in turn supplied increasing amounts of content.

Nearly all other project rules were either optional, or straightforward applications of

these principles. The project probably would still have succeeded nicely even if it had

moderated or tweaked some of these principles. For instance, radical openness that is,

being open even to those who brazenly flouted and disrespected the project s mission,

was surely not necessary; after all, without them, the project would have been more wel

coming to the many people who felt they could not work with such difficult people.

And if we had required people to sign in, that would not have made very much differ

ence (although it probably would have made some in the beginning; the project

wouldn t have grown as fast). Of course, we didn t have to use the GNU FDL23 for the

license. Certainly, we did not need to set the community up initially as an anarchy gov

erned by some vague consensus: instead, we could have adopted a charter from the very

start. The project could have been managed quite differently; there could have been spe

cially designated and well-qualified editors. The project could have officially encour

aged and deferred to experts. An article approval process could have been adopted with

out threatening the principle of posting unedited content for collaboration. Certainly,

many of the later bells and whistles the arbitration committee, a three-revert rule, hav

ing administrators with the particular configuration of rights they have, etc. were not

absolutely necessary to adopt in the precise forms they took. These differences would

not have threatened the basic principles that made the project work.

The basic principles that explain why Wikipedia could start working and still does

work are relatively simple, few in number, and above all, general. The more spe

cific principles that Wikipedia adopted were a matter of historical accident. There

was a great deal of
"wiggle

room." Those intent on studying or replicating the Wiki

pedia model would do well to bear that in mind.

A Series of Controversies

So much for the very early history of Wikipedia; the next phase involved rapid growth
and some serious internal controversies over policy and authority. If Wikipedia s basic

23 That is, the GNU Free Documentation License. Can be read at http://www.gnu.org/copyleft/fdl.html.

By 2000-2001, this license was the biggest thing going, as far as open content licenses were

concerned; Creative Commons, at http://creativecommons.org, did not get started until 2001.

A Series of Controversies X 323

policy was settled upon in the first nine months, its culture was solidified into some

thing closer to its present form in the nine months after that.

The project continued to grow. We had 6,000 articles by July 8; 8,000 by August 7;

11,200 by September 9; and 13,000 by October 4. Consulting the web site logs, we

noted a Google effect: each time Google spidered the web site, more pages would be

indexed; the greater the number of pages indexed, the more people arrived at the

project; the more people involved in the project, the more pages there were to index.

In addition to this source of new contributors, Wikipedia was Slashdotted several

times and had large influxes of new users, particularly after two articles I wrote for

Kuro5hin were posted on Slashdot: "Britannica or Nupedia? The Future of Free

Encyclopedias" (July 25, 200 1)
24 and "Wikipedia is wide open. Why is it growing so

fast? Why isn t it full of nonsense?" (September 24, 2001). 25

This growth brought difficult challenges. Some of our earliest contributors were aca

demics and other highly qualified people, and it seems to me that they were slowly

worn down and driven away by having to deal with difficult people on the project. I

hope they will not mind that I mention their names, but the two that stick in my
mind are J. Hoffman Kemp26 and Michael Tinkler,27 a couple of Ph.D. historians.

They helped to set what I think was a good precedent for the project in that they

wrote about their own areas of expertise, and they contributed under their own, real

names. The latter has the salutary effect of making the contributor more serious and

more apt to take responsibility for his contributions. They are also very nice people,

but they did not "suffer fools
gladly." Consequently, they wound up in some silly dis

putes that would have driven less patient people away instantly. So, there was a

growing problem: persistent and difficult contributors tend to drive away many bet

ter, more valuable contributors; Kemp and Tinkler were only two examples. There

were many more who quietly came and quietly left. Short of removing the problem

contributors altogether which we did only in the very worst cases there was no

easy solution under the system as we had set it up. And I am sorry to have to admit

that those aspects of the system that led to this problem were as much my responsi

bility as anyone else s. Obviously, I would not design the system the same way if

given the chance again.

As a result, I grew both more protective of the project and increasingly sensitive to

abuse of the system. As I tried to exercise what little authority I claimed, as a corrective

to such abuse, many newer arrivals on the scene made great sport of challenging my

authority. One of the earliest challenges happened in late summer 2001. The front page

of Wikipedia then open to anyone to edit, like any other page on the project was

24 Op. cit.

25 http://www.kuro5hin.Org/story/2001/9/24M3858/2479.
26 "UserJHK," http://en.wikipedia.org/wiki/User.JHK.

27 "UserMichaelTinkler," http://en.wikipedia.org/wiki/wiki.phtml?title=User:MichaelTinkler.

324
* *

The Early History of Nupedia and Wikipedia: A Memoir

occasionally vandalized with infantile graffiti. Someone then tried to make an archive of

the vandalism that had been done to the front page of Wikipedia. I maintained that to

make such an archive would be to encourage such vandalism, so I deleted the archive.

This occasioned much debate. Then a user made the archive a subpage of his own user

page and user pages were generally held to be the bailiwick of the user. Conse

quently 1 deleted that subpage, which occasioned a further hue and cry that, perhaps, I

was abusing my authority. The vandalism-enshrining user in question proceeded to

create a "deleted
pages" page, on which the deleted vandalism archives were listed, as if

to accuse me of trying to act without public scrutiny but this was, of course, per

fectly acceptable to me. At the time, I thought this controversy was just as silly as it will

sound to most people reading this. I thought that I needed only to
"put my foot down"

a little harder and, as had happened for the first six months of the project, participants

would fall into line. What I did not realize was that this was to be only the first in a

long series of controversies. The ultimate upshot of these was to undermine my own

moral authority over the project and to make the project as safe as possible for the most

abusive and contentious contributors.

Throughout this and other early controversies, much of the debate about project pol

icy was conducted on the wiki itself. Other debates were conducted on mailing lists,

Wikipedia-L
28 and then later for the English language project, WikiEN-L. 29 In addi

tion, people had taken to putting their own essays on Wikipedia, as subpages of their

user pages. These too were occasioning debate. It seemed to me, and many other con

tributors, that this debate was distracting the community from our main goal: to create

an encyclopedia. Consequently I proposed
30 that we move the debate to another wiki

that was to be created specifically for that purpose what became known as the "meta-

wiki."
31 This proposal was very widely supported, so we set it up.

As it happened, the meta-wiki became even more uncontrolled than Wikipedia itself,

and for many months was continually infested with contributions by people that can

only be called "trolls."
32 That epithet came to be discouraged, however, for reasons soon

to be explained. The existence of trolls was a problem we felt we should tolerate and

deal with only verbally, not with harsh penalties for the sake of encouraging the

broadest amount of participation. In the first years, only the worst trolls were expelled

from the project. I do not know whether this policy has been changed as a result of the

operation of the much-later installed Arbitration Committee. 33

28
http://mail.wikipedia.org/pipermail/wikipedia-l.

29 http://mail.wikimedia.org/pipermail/wikien-l.
30

"Moving commentary out of Wikipedia," posted November 3, 2001
, http://meta.wifeimedia.org/

wiki/Moving_commentary_out_of_Wikipedia.
31 Wikipedia Meta-Wiki, http://meta.wikimedia.org/wiki/Main_Page.
32 "Internet troll," http://meta.wikimedia.org/vviki/Main_Page.
33

"Wikipedia:Arbitration Committee," http://en.wikipedia.org/wiki/Wikipedia:Arbitration_
Committee.

A Series of Controversies
*
* 325

There are obvious reasons that the meta-wiki proved harder to control. First, it had

no specific purpose, other than to host project debate and essays that do not belong

on the main wild which was not enough to make anyone care very much about it.

Second, because many people did not care what happened on the meta-wiki, they

did not do the very necessary weeding
34 that takes place on Wikipedia. Besides, as

the meta-wiki was a repository of opinion, people felt less comfortable editing or

deleting what was, after all, only opinion.

What happened was that project policy discussions moved almost exclusively to the

project mailing lists. 35 There is a reason why this was a superior solution to having

much debate on an uncontrolled, "unmoderated"36 wiki. On a wiki, contributions exist

in perpetuity, as it were, or until they are deleted or radically changed. Consequently,

anyone new to a discussion sees the first contribution first. So, whoever starts a new

page for discussion also, to a great extent, sets the tone and agenda of the discussion.

Moreover, nasty, heated exchanges live on forever on a wiki, festering like an open

wound, unless deliberately toned down afterward; if the same exchange takes place on

a mailing list, it slips mercifully and quietly into the archives.

At about the same time that we decided to start the meta-wiki, and soon after the van

dalism archive affair, I was thinking a great deal about Wikipedia s apparent anarchy,

and I wrote an essay titled "Is Wikipedia an experiment in anarchy?"
37 This and the

discussion that ensued tended to ossify positions with regard to the authority issue: I

and a few others agreed that Jimmy and I should have special authority within the sys

tem, to settle policy issues that needed settling. Jimmy was relatively quiet about this

issue. This was probably because his authority, unlike mine, was generally accepted. By

November or December of 2001, Wikipedia was growing fast, and became the subject

of regular news reporting, even by the likes of The New York Times and MIT s Technol

ogy Review. After the two major Slashdottings
38 earlier in the year, we knew that large

influxes of members could change the nature of the project, and not necessarily for the

better. If there were some major news coverage an evening news story in the U.S., for

example there might be many new people who would need to be taught about Wiki

pedia s standards and positive cultural aspects. So, I proposed what I thought was a

humorously named "Wikipedia Militia"
39 which would manage new (and very wel

come) "invasions" by new contributors. By this time, however, there was a small core

34 "The Art of Wikipedia Weeding," posted September 26, 2001, http://meta.wikimedia.org/wiki/

~The_an_of_Wikipedia_weeding.
35 "Wikipedia:Mailing lists," http://en.wikipedia.org/wiki/Wikipedia:Mailing_lists.

36 "Moderator (communications)," http://en.wikipedia.org/wiki/Moderator_%28communications%29.

37 Posted November 1, 2001, http://meta.wikimedia.org/wiki/h_Wikipedia_an_experiment_in_

anarchy.

38 "Slashdot effect," http://en.wikipedia.org/wiki/Slashdot_effect.

39 "Wikipedia:The Wikipedia Militia," http://en.wikipedia.org/w/index.php?title=Wikipedia:The_

Wikipedia_Militia&&gt;oldid=290128.

326 * * The Early History of Nupedia and Wikipedia: A Memoir

group of people who were constantly on the watch for anything that smacked the least

bit of authoritarianism; consequently, the name, and various aspects of how the pro

posal was presented, was vigorously debated.40 Eventually, we switched to "The Wiki-

pedia Welcoming Committee" and finally, the "Volunteer Fire Department"
41 which

eventually, it seems, fell into disuse.

The governance challenge

After the September Slashdotting, I composed a page originally called "Our Replies to

Our Critics"
42 (and now called

"Replies
to Common Objections"

43
), in which I

addressed the problem that "cranks and partisans" might abuse the system:

Moreover and this is something that you might not be able to understand very

well if you haven t actually experienced it there is a fair bit of (mostly friendly)

peer pressure, and community standards are constantly being reinforced. The

cranks and partisans, etc., are not simply outgunned. They also receive consider

able opprobrium if they abuse the system.

This reflects the conception I had in September 2001 of Wikipedia s culture; the reply

in the previous paragraph was as much hopeful and prescriptive as descriptive. But it

turned out to be only partly true. As difficult users began to have more of a "run of the

place,"
in late 2001 and 2002, opprobrium was in fact meted out only piecemeal and

inconsistently. It seemed that participation in the community was becoming increas

ingly a struggle over principles, rather than a shared effort toward shared goals. Any

attempt to enforce what should have been set policy neutrality, no original research,

and no wholesale deletion without explanation was frequently if not usually met with

resistance. It was difficult to claim the moral high ground in a dispute, because the

basic project principles were constantly coming under attack. Consequently, Wikipe
dia s environment was not cooperative but instead competitive, and the competition

often concerned what sort of community Wikipedia should be: radically anarchical and

uncontrolled, or instead more single-mindedly devoted to building an encyclopedia.

Sadly, few among those who would love to work on Wikipedia could thrive in such a

protean environment.

It is one thing to lack any equivalent to
"police"

and "courts" that can quickly and

effectively eliminate abuse; such enforcement systems were rarely entertained in

Wikipedia s early years, because according to the wiki ideal, users can effectively

40 "Wikipedia talk:The Wikipedia Militia," http://en.wikipedia.org/wiki/Wikipedia_talh:The_

WikipediaJMilitia.
41

"Wikipedia:Volunteer Fire Department," http://en.wikipedia.org/wiki/Wikipedia:Volunteer_Fire_

Department.
42 "Wikipedia/Our Replies to Our Critics," http://web.archive.org/web/2001 1 11 2085441/www.

wikipedia.com/wikifWikipedia/Our_Replies_to_Our_Critics.
43 "Wikipedia:Replies to common objections," http://en.wikipedia.org/wiki/Wikipedia:Replies_to_

common_objections.

police each other. It is another thing altogether to lack a community ethos that is

unified in its commitment to its basic ideals so that the community s champions could

claim a moral high ground. So, why was there no such unified community ethos and

no uncontroversial "moral high ground"? I think it was a simple consequence of the

fact that the community was to be largely self-organizing and to set its own policy by
consensus. Any loud minority, even a persistent minority of one person, can remove

the appearance of consensus. In fact, I recall that (in October 2002, after I resigned) I

felt compelled by ongoing controversies to request
44 that Jimmy declare that certain

policies were in fact nonnegotiable, which he did. 45 Unfortunately, this declaration

was too little, too late.

By late 2001, I had gained both friends and detractors. I think I had become,

within the project, a symbol of opposition to anarchism, of the enforcement of

standards, and consequently of the exercise of authority in a radically open project.

But I was still trying to manage the project as I always had by force of personal

ity and "moral" authority. So, when people arrived who clearly and openly disre

spected established policy, I was, in my frustration, very short with them; and

when the project continued to try to establish new policies, my role in articulating

those policies and actually establishing them (attempting to express a "consensus")

was challenged. This undermined what remaining moral authority I had. I felt my
job was on the line, and the project continued in turmoil day in and day out. From

my point of view, fires were spreading everywhere, and as I had become a some

what controversial figure, I did not have enough allies to help me put them out.

Consequently, I was too peremptory and short with some users. This, however,

exacerbated the problem, because the attitude could not be backed up by punish

ment; harsh words from a leader are empty threats if unenforceable. I thereby

handed my antiauthoritarian "wiki-anarchist" opponents an advantage, because

ironically they were able to portray me as dictatorial, when I was anything but. I

came to the view, finally and belatedly, that it would be better to ignore the trolls.

However, this is particularly hard to do on a wiki. Unlike on an email list, trollish

contributions do not just disappear into the archives; they sit out in the open, as

available as the first day they appeared and festering. Attempts to delete or radi

cally edit such contributions were often met by reposting the earlier, problem ver

sion: the ability to do that is a necessary feature of collaboration. Persistent trolls

could be a serious problem, particularly if they were able to draw a sympathetic

audience. And there was often an audience of sympathizers: contributors who

philosophically were opposed to nearly any exercise of authority, but who were not

trolls themselves.

44 "What we need," http://mail.wikipedia.org/pipermail/wikien-l/2002-November/000047.html
45 "Re: What we need," http://mail.wikipedia.org/pipermaiI/wikien-i/2002-November/000086.htmi.

328 x C The Early History of Nupedia and Wikipedia: A Memoir

It is ironic that it was I who initially supported the lack of any enforceable rules in

the community. Some legal theorists would maintain that a community that lacks

enforceable rules lacks any law at all. In retrospect, it is clear that there was a funda

mental problem with my role in the system: to have real authority, I needed to be

able to enforce the rules, and for both fairness and the perception of fairness, there

needed to be clear rules from the beginning. But, by my own design, 1 had very early

on rejected the label "editor in chief and much real enforcement authority; a year

into the game, it would have been difficult if not impossible to claim enforcement

authority over active but problem users. Moreover, I was the author of the
"ignore

all

rules" rule. My early rejection of any enforcement authority, my attempt to portray

myself and behave as just another user who happened to have some special moral

authority in the project, and my rejection of rules these were all clearly mistakes on

my part. They did, I think, help the project get off the ground; but I really needed a

subtler and more forward-looking understanding of how an extremely open, decen

tralized project might work.

In retrospect, I wish I had taken Teddy Roosevelt s advice:
"Speak softly and carry a

big stick." Since my "stick" was very small, I suppose I felt compelled to
"speak

loudly," which I regret. As it turns out, it was Jimmy who spoke softly and carried

the big stick; he first exercised "enforcement
authority." Since he was relatively silent

throughout these controversies, he was the
"good cop,"

and I was the "bad
cop": that,

in fact, is precisely how he (privately) described our relationship. Eventually, I tired

of this arrangement. Because Jimmy had kept a low profile in the early days of the

project and showed that he was willing to exercise enforcement authority upon occa

sion, he was never as ripe for attack as I was.

Perhaps the root cause of the governance problem was that we did not realize, well

enough that a community would form, nor did we think carefully about what this

entailed. For months I denied that Wikipedia was a community, claiming that it was,

instead, only an encyclopedia project, and that there should not be any serious gover

nance problems if people would simply stick to the task of making an encyclopedia.

This was wishful thinking. In fact, Wikipedia was from the beginning both a commu

nity and an encyclopedia project. And for a community attempting to achieve some

thing, to be serious, effective, and fair, a charter seems necessary. In short, a collabora

tive community would do well to think of itself as a polity with everything that that

entails: a representative legislative, a competent and fair judiciary, and an effective exec

utive, all defined in advance by a charter. There are special requirements of nearly

every serious community, however, best served by relevant experts; and so I think a

prominent role for the relevant experts should be written into the charter. I would rec

ommend all of this to anyone launching a serious online community. But indeed, in

January 2001, we were in both "uncharted" and "unchartered" territory. The world, I

think, will be able to benefit from this and our other initial mistakes.

A Series of Controversies
*
* 329

In fairness to ourselves, it was a good idea to allow the community to decide by

experience and consensus what article content rules to endorse. This allowed us to

generate a very sensible set of article content rules. Yet it was a mistake to apply the

same thinking to the organization of the community itself. We should have acknowl

edged that a community would form, that it would have certain persistent and diffi

cult issues that would need to be solved, and that a lack of any effective founding

community charter might result in chaos.

My Resignation and Final Few Months with the Project

Throughout the governance controversy, I was preparing for my wedding, which

took place December 1, 2001. A few days after I arrived back from my honeymoon, I

was informed that I should probably start looking for another job, because Bomis

had to lay off most of its workers. Bomis had 10 to 12 workers at the end of 2000,

and by the beginning of 2002 it was back to its original 4 to 5. My salary was

reduced in December and then halved in January. This seemed inevitable because

Wikipedia was not bringing in any money at all for Bomis, even if Wikipedia was

becoming even more of a publicly recognized, if still modest success. Our first anni

versary came just before we announced having 20,000 articles, and I was invited to

talk about the project at Stanford46 on January 16.

I was officially laid off at the beginning of February, which I announced a few weeks

later.47 I had continued on as a volunteer; Wikipedia and Nupedia were, after all,

volunteer projects. But I was laboring in the aftermath of the governance controver

sies of the previous fall and winter, which promised to make the job of a volunteer

project leader even more difficult. Moreover, I had to look for a real job. So, through

out the month of February, I considered resigning altogether.

Jimmy had told me the previous December that Bomis would start trying to sell ads

on Wikipedia to pay for my job. Even in that horrible market for Internet advertis

ing, there were already enough page views on Wikipedia that advertising proceeds

might have provided me a very meager living. We knew that this would be extremely

controversial, because so many of the people who are involved in open source and

open content projects absolutely hate the idea of advertising on the web pages of free

projects, even to support project organizers. In fact, when this advertising plan was

46 The presentation may be viewed at http://www.stanford.edu/class/ee380/winter-schedule.html. The

text of the talk is located at http://meta.wikimedia.org/wiki/Wikipedia_and_why_it_matters.

You might notice that I was still plugging the notion of using Nupedia to vet Wikipedia articles,

as an answer to the objection that Wikipedia articles are unreliable.

47 "Announcement about my involvement in Wikipedia and Nupedia," http://meta.wikimedia.org/

wiki/Announcement_about_my_involvement_in_Wikipedia_and_Nupedia Larry_Sanger.

330 ^ C The Early History of Nupedia and Wikipedia: A Memoir

announced, in late February of 2002, the Spanish Wikipedia
48 was forked49 (some

thing I urged them not to do50).

Bomis was not successful in selling any ads for Wikipedia anyway early 2002 was

the very bottom of the market for Internet advertising. I also had some hope that we

might, finally, set up the project s managing nonprofit, which we had discussed

doing for a long time (and which eventually did come into being: Wikimedia51
). The

job of setting up the nonprofit was left to me, but ongoing controversies seemed to

eat up any time I had for Wikipedia, and frankly I had no idea where to begin. So,

after a month without pay, I announced my general resignation;
52 I completely

stayed away from the project for a few months.

Wikipedia s offshoot projects a dictionary, a textbook project, a quotation project, a

public domain book repository, etc. were all started in 2002 or later, and I cannot

claim any credit for them.

In the spring, a controversy erupted. Caring as I did and as I still do about the

future of free encyclopedias, I felt compelled to get involved. The controversy fea

tured a troll who was putting up huge numbers of screeds on the meta-wiki and on

Wikipedia as well. The controversy began with a discussion of what to do about, and

how to react to, this particular troll. I maintained that one should not "feed the troll,"

and that the troll should be "outed" (it was an anonymous user, but it was not hard

to use Google to determine the identity of the troll) and shamed.

There resulted a broader controversy about how to treat problem users generally. There

were, as I recall, two main schools of thought. One, to which I adhered and still

adhere, was that bona fide trolls should be "named and shamed" and, if they were

unresponsive to shaming, they should be removed from the project (by a fair process)
sooner rather than later. We held that a collaborative project requires commitment to

ethical standards which are as all ethical standards ultimately are socially estab

lished by pointing out violations of those standards. Hence naming and shaming. A
second school of thought held that all Wikipedia contributors, even the most difficult,

should be treated respectfully and with so-called WikiLove.^ Hence trolls were not to

be identified as such (since "troll" is a term of abuse), and were to be removed from the

project only after a long (and painful) public discussion. I felt at the time that the prev
alence of the second school entailed rejection of both objective standards and rules-

48 Located at
http://es.wifeipedia.org/wihi/Portada.

49 The fork is called Enddopedia Libre Universal en Espanol, http://enddopedia.us.es/index.php/

Enddopedia_Libre_Universal_en_Espa%Flol.
50 "Wikipedia:Statement by Larry Sanger about the Spanish wiki encyclopedia fork," http://es.

wifeipedia.org/wifei/Wifeipedia:Statement_b&gt; _Larry_Sanger_about_the_Spanish_wifei_enc&gt; clopedia_
fork.

51 The Wikimedia Foundation s home page: http://www.wifeimedia.org/.
52

"My resignation," http://meta.wifeimedia.org/wifei/My_resignation Larry_Sanger.
53 "Wikipedia:WikiLove," http://en.wifeipedia.Org/wifei/Wifeipedia:WifeiLove.

My Resignation and Final Few Months with the Project X 331

based authority. It is impossible to explain why one is removing some partisan screeds

from the wild without, in some way, identifying it as a partisan screed, and pointing

out that such productions are inconsistent with the neutrality policy. This will neces

sarily be received as less than respectful and "loving," especially if one must engage the

troll himself in a long, drawn-out dispute. In a very long dispute with any trollish type,

it is only a matter of time before some epithet gets bandied about. More generally, the

very application of rules, or laws, entails a moral judgment, or what for its effectiveness

must have the force of a moral judgment. I suppose I agree with those legal theorists

who say that there is necessarily, in its core, a moral component to the law. Conse

quently, the new policy of "WikiLove" handed trolls and other difficult users a very

effective weapon for purposes of combating those who attempted to enforce rules. After

all, any forthright declaration that a user is doing something that is clearly against

established conventions posting screeds, falsehoods, nonsense, personal opinion, etc.

is nearly always going to appear disrespectful, because such a declaration involves a

moral accusation. The result is that, on pain of becoming persona non grata in the com

munity, one had to treat brazen, self-conscious violators of basic policy with particular

respect. It was a perfect coup for the resident wild anarchists. I again left the project for

several months.

In fall of 2002, I had started teaching at a local community college, and with some

extra time on my hands, I started editing Wikipedia a little and engaging in mailing

list discussions. I think my first new post to Wikipedia-L, from September 1, 2002,

was "Why
the free encyclopedia movement needs to be more like the free software

movement."54 In it I argued that the free software movement is led and dominated

by highly qualified programmers, and that the "free encyclopedia movement" that

is, Wikipedia, Nupedia, and other newer projects needs to move in that direction. I

suggested that Nupedia be redesigned to release
"approved"

versions of Wikipedia

articles; Wikipedia itself was not to be touched. This proposal met with a very cool

reception. After a few months of discussion, Jimmy himself was "intending
to revive

Nupedia in the near future"
55 and "thinking very much along the lines of what is

being discussed here." Unfortunately, this never happened.

By December, I proposed, and Magnus Manske very helpfully coded, an expert-con

trolled approval process for Wikipedia that was in fact to be independent of both

Nupedia and Wikipedia.
56 It would not have affected the Wikipedia editorial pro

cess. It would have lived in a separate namespace or domain, as an independent add

on project for Wikipedia. Without explaining the details, expert reviewers, the

recruitment of which I would organize, would examine Wikipedia articles and

approve or disapprove of particular versions of those articles. We set up a mailing

54 http://mail.wikipedia.org/pipermail/wikipediaA/2002-September/022164.html.

55 "Wikipedia subset proposal," http://mail.wifetpedia.org/pipermail/wifeipeciia-l/2002-November/

024677.html

56 http://mail.wifeipedia.org/pipermail/wifeipedia-l/2002-November/024684.html.

332 * The Early History of Nupedia and Wikipedia: A Memoir

list, Sifter-L (archives no longer online, apparently), which for several weeks dis

cussed policy issues.

There was not a great deal of support for the proposal on Wikipedia-L. There was lit

tle or no excitement that the new project might bring into Wikipedia a fresh crop of

subject area specialists. But that was fine as far as 1 was concerned, since the project

was to operate independently of Wikipedia. Still, I had the very distinct sense that

any specialists arriving on the scene would not necessarily be met with open arms

particularly if before approving an article they wished to make whatever changes to

articles that they felt necessary. There were even a few Wikipedians who made it

clear that experts should not expect to be treated any differently than anyone else,

even when writing about their areas of expertise.

I then considered whether the interaction between Wikipedians and the new
reviewers might be a problem after all. Surely, I thought, most specialists would
want to edit even very good articles before approving them (in the independent sys

tem). This would require that the reviewers interact with Wikipedians. Wikipedia s

culture had become such that disrespect of expertise was tolerated, and, again, trolls

were merely warned, but very politely (in keeping with the policy of WikiLove),
that they please ought to stop their inflammatory behavior. Trolls would certainly

find ripe targets in expert reviewers, I thought. I recalled that patient, well-edu

cated Wikipedians like J. Hoffmann Kemp and Michael Tinkler had been driven off

the project not only by trolls but also by some of the more abrasive and disrespect
ful regulars. I then considered: could I in good conscience really ask academics,
who are very busy, to engage in this activity that would probably annoy most of

them and do nothing to contribute to their academic careers? Recruiting for Nupe-
dia had been easy by comparison and caused me no such pangs of conscience.

I believe it was this problem that finally prompted me in January of 2003 to inform

Jimmy by private email that I was breaking with the project altogether, the only way he

could prevent this, I told him, was that he personally crack down on problem users,

and make the project more officially welcoming to experts. I also told him that I did

not expect this information to change his mind, and that I did not mean to issue an

ultimatum. And in fact our exchange did not change his mind. I concluded that we had
a fundamental philosophical disagreement about how the project should be run. I

respected and still respect his view. That is where matters ended, and it was then that I

broke with Wikipedia altogether.

Final Attempts to Save Nupedia

Nevertheless, I was interested in pursuing Nupedia s development. It still seemed sal

vageable to me.

I recall two incidents in which I tried to have Nupedia revived. First, I approached
Jimmy with the offer to try to find a buyer/managing organization for Nupedia. I

Final Attempts to Save Nupedia I 333

suggested that since Bomis did not have enough money to support it, and since

Jimmy did not appear to have any specific intentions with the project, I might be

able to find a university or other organization that would take on the responsibility.

In the end, we did not pursue this possibility. Later, I offered to buy Nupedia

myself that is, the domain name, the membership list, and whatever other propri

etary material Bomis might have controlled. I wanted to start it up again as a sim

pler, more streamlined, but still fully peer-reviewed project. I thought, moreover,

that if I owned it, I might be able to give it to a suitable sponsoring educational or

nonprofit institution. Jimmy seemed cool to the idea, and did not ask for any spe

cific offers.

Nupedia, then, didn t die just from the inefficiency of its system. To some extent it

was also allowed to die, even after it was clear that its former editor in chief

expressed an interest in continuing the project under an entirely different system.

The result was that, without a leader or organization that could support its mission,

Nupedia died a slow death. The server it lived on had some trouble in 2003, and as a

result, the web site went offline. For whatever reason, the web site was never brought

up again after that.

Perhaps there was a concern that Nupedia would essentially fork Wikipedia. I feel

that such a concern would not have justified letting Nupedia wither untended. The

projects, Wikipedia and Nupedia, were naturally complementary parts of a single,

symbiotic whole. That at least is how I always regarded them. From the founding of

Wikipedia, I always thought Wikipedia without Nupedia would have been unreli

able, and that Nupedia without Wikipedia would have been unproductive. Together

they were to be an "unstoppable high-quality article-creation juggernaut."
57

It is still disappointing to me that we made plans and promises to thousands of

Nupedians, including hundreds of extremely well-qualified people, some of them

leaders in their fields. We spent many thousands of hours, all told, on the project. I

apologize to those people, and I can only hope that they will find some future open
content encyclopedia project worthy of their participation, one that will show the

world the potential that Nupedia had.

Conclusions

I have some advice for anyone who would like to start new projects on the model of

Wikipedia.

You can learn from Wikipedia s success; so, first and most importantly, note the

principles I ve articulated about why Wikipedia works.

57 "Britannica or Nupedia?" op. cit.

334 * * The Early History of Nupedia and Wikipedia: A Memoir

But you can also learn from our mistakes. Governance issues are, in my opinion, the

primary failing of Wikipedia. Bear in mind, also, that these are only rough guide

lines, for those who are starting projects that have enough resemblance to Wikipe
dia. These are not perfectly general rules:

If you intend to create a very large, complex project, establish early on that there

will be some nonnegotiable policy. Wikis and collaborative projects necessarily

build communities, and once a community becomes large enough, it absolutely

must have rules to keep order and to keep people at work on the mission of the

project. "Force of
personality" might be enough to make a small group of people

hang together; for better or worse, however, clearly enunciated rules are needed

to make larger groups of people hang together.

There is some policy that, with forethought, can be easily predicted will be nec

essary. Articulate this policy as soon as possible. Indeed, consider making a

project charter to make it clear from the beginning what the basic principles gov

erning the project will be. This will help the community to run more smoothly
and allow participants to self-select correctly.

Establish any necessary authority early and clearly. Managers should not be

afraid to enforce the project charter, even by removing people from the project.

As soon as it becomes necessary, it should be done. Standards that are not

enforced in any way do not exist in any robust sense. Do not tolerate deliberate

disruption from those who oppose your aims. Tell them to start their own

project; there s a potentially infinite amount of cyberspace.

As any disagreements among project managers are apt to be publicly visible in a

collaborative project, and as this is apt to undermine the moral authority of at

least one manager, make sure management is on the same page from the begin

ningpreferably before launch. This requires a great deal of thinking through
issues together.

In knowledge-creation projects, and perhaps many other kinds of projects, make

special roles for experts from the very beginning. Do not attempt to add those

roles later, as an afterthought. Specialists are one of your most important
resources, and it is irrational not to use them as much as you can. Preferably,

design the charter so that they are included and encouraged. Moreover, make the

volunteer project management a meritocracy, and not based on longevity but

based on the ability to lead and contribute to the project. That is the only condi

tion under which very many of the best-qualified people will want to participate.

Another point needs more in-depth development.

Radical and untried new ideas require constant refinement and adaptation to suc

ceed. The first proposal is very rarely the best, and project designers must learn from
their mistakes and constantly redesign better projects. Nupedia s Advisory Board

Conclusions X 335

failed to admit to inherent flaws in its system, and its delay in admission shut the

window of opportunity on its improvement. The Wikipedia community fell into a

mistake by thinking that just a few the wiki feature and the neutrality policy and a

few other things explained Wikipedia s success and that those features can thus be

applied with no significant changes to new projects. But there is no substitute for

constant creativity and problem solving nor for honesty about what problems need

solving. The honesty to recognize problems and creativity in solving them is, after all,

what made Wikipedia succeed in the first place.

This is a crucial point: if you use a tool or model from another project, think through

very carefully how that tool or model should be adapted. Do not assume that you

need to use every feature or every aspect of the surrounding culture, that you are

borrowing. Wikipedia borrowed rather too much from (1) the culture of wikis, (2)

unmoderated online discussions, and (3) freewheeling online culture generally. To

be sure, Wikipedia is also a product of those cultures, and works as well as it does

largely because of what it borrowed from those cultures. But it also shares some of its

more serious current flaws58 with such cultures. Those planning new projects, or

wanting to overhaul old ones, might well bear in mind that a certain cultural con

text, including the context that has grown up around a tool, just might not be right

for that project. Let me elaborate:

Consider first the culture of wikis. On the one hand, I said we wanted to deter

mine the best rules, and experience would help us determine that; so we had no

rules to begin with. On the other hand, one might add that another reason we

began without rules was that we were partaking in the extremely uncontrolled,

freewheeling nature of "traditional" wikis. I think that s right. But there is an

excellent reason why an encyclopedia project should not partake in that

extremely uncontrolled nature of wiki culture, and why it should adopt actually

enforceable rules. Unlike traditional wikis, encyclopedia projects have a very

specific aim, with very specific constraints, and efficient work toward that aim,

within those constraints, practically requires the adoption of enforceable rules.

The mere fact that most wikis, when Wikipedia was created, did not have

enforceable rules hardly meant that one could not innovate further, and create

one that did have rules.

Moreover, Jimmy and I and most of the first participants on Wikipedia were vet

erans of unmoderated Internet discussion groups, and hence, naturally, we could

appreciate the advantages of letting a virtual community develop in the absence

of any real authority. In unmoderated forums, there is often found a sense,

among some participants, that any attempt to oust a particularly troublesome

user amounts to unjustifiable censorship. The result is that the existence of many

58 See "Why Wikipedia Must Jettison Its Anti-Elitism," op. cit.

336 * C The Early History of Nupedia and Wikipedia: A Memoir

unmoderated forums online has created a small army of people militantly

opposed to the slightest restriction on speech, who feel that they do and should

have a right to say whatever they like, wherever they like, online. Any attempt to

create and enforce rules for Internet projects, when that small army is ready to

cry "censorship,"
will seem daring or even outrageous in many contexts online.

But there is an excellent reason why such anarchy is inappropriate for many

projects, including encyclopedia projects, even one that is self-policing like a

wiki. There simply must be a way to enforce rules for rules to be effective. Given

that encyclopedia project development happens almost entirely using words,

nearly any rules will also be restrictions on speech. Anyone who advocates many
enforceable rules on a collaborative project, in the cultural context of an Internet

filled with so many unmoderated discussion groups, can be made to seem reac

tionary. But this is only a result of that cultural context; in any other context, the

existence of rules would be perfectly natural and unobjectionable.

Finally, and generally speaking, the Internet is a great leveler. Since social inter

action can proceed among complete strangers who cannot so much as see each

other, things that seem to matter in many "meatspace" discussions, such as age,

social status, and level of education, are often dismissed as unimportant online.

Many Internet forums, chatrooms, and blogs are populated by people who are

identified by only a "handle," and any suggestion that communication should be

restricted or in any way altered in accordance with
"expertise"

or
"authority"

is

likely to be met with outrage in most forums. But there are several excellent and

obvious reasons why expertise does need special consideration in an encyclope

dia project, and in other collaborative projects. First, there are many subjects

that dilettantes cannot write about credibly; I, for example, could not write very

credibly about astronomy or speleology, but I have a passing interest in both. If I

am working only with other dilettantes, our articles are apt to remain amateur

ish at best; we can fill in the gaps in each other s knowledge, and do research,

but the results will remain problematic until someone with more knowledge of

the subject contributes. Second, there are very many specialized subjects about

which no one but experts have any significant knowledge at all. Third, it is only

the opinions of experts that will be trusted by most of the public as authoritative

in determining whether an article is generally reliable. Moreover, the standards

of public credibility are not likely to be changed by the widespread use of Wiki-

pedia or by online debate about the reliability of Wikipedia. Like them or hate

them, those are the facts. But if one points out these facts online, culturally "lev

eled" as it is, particularly in forums or projects like Wikipedia which go out of

their way to ignore individual differences among people, one finds a frosty

reception at best.

Consider, if you will, that it was because Wikipedia was started in the context of the

ingrained cultures of wikis, of unmoderated discussion forums, and of the leveling,

anti-elitist influence of the Internet at large, that it was very difficult for us to exer

cise the maximal amount of creativity that a maximally successful project would

require. In establishing a new cultural context, we were deeply constrained by the

old. Now, to be sure, Wikipedia did not have to adopt the particular conjunction of

policies that it did. But it is not surprising that it did adopt its particular conjunction

of policies, considering the conjunction of influences on its development. It would

have required much more explanation, persuasion, and struggle to have persuaded

potential participants that some persons, even in a wiki environment, should have

special standing. Constantly reinforced cultural habits die very hard indeed, and

place strong constraints upon what can be imagined, and what bare possibilities

seem worth consideration.

It was our willingness to exercise our creativity and follow our imagination and cre

ate what is a new kind of culture, that led to Wikipedia s success. For the overall

project of creating open content encyclopedias and indeed, for the fantastic collab

orative Internet that has yet to be created to reach its full potential, the processes of

identifying mistakes honestly, and creatively seeking solutions, must be ramped up
and continued unabated.

338 x C The Early History of Nupedia and Wikipedia: A Memoir

CHAPTER 21

Sonali K. Shah

Open Beyond Software

Teams of employees at firms innovate. Scientists and engineers at universities and
research institutions innovate. Inventors at private labs innovate. Regular people con
sume. Wrong! Regular people innovate too. Users have been the source of many
large and small innovations across a wide range of product classes, industries, and
even scientific disciplines.

We are accustomed to thinking of firms as the primary engine of innovative activity
and industrial progress. The research and development activities of most firms are

based on a proprietary model; exclusive property rights provide the basis for captur

ing value from innovative investments, and managerial control is the basic tool for

directing and coordinating innovative efforts. The proprietary model does not, how
ever, stand alone.

The
"community-based" model has generated many of the innovations we use on a

daily basis. The social structure created by this model has cultivated many entrepre
neurial ventures and even seeded new industries and product categories. In stark

contrast to the proprietary model, the community-based model relies neither on
exclusive property rights nor on hierarchical managerial control. The model is based

upon the open, voluntary, and collaborative efforts of users a term that describes

enthusiasts, tinkerers, amateurs, everyday people, and even firms that derive benefit

from a product or service by using it.

X333

Open source software development is perhaps the most prominent example of the

community-based model. Although often viewed as an anomaly unique to software

production, the community-based model extends well beyond the domain of soft

ware. Innovative communities have been influential in product categories as diverse

as automobiles, sports equipment, and personal computers.

In this chapter, I describe and discuss three elements of the community-based
model. First, users and manufacturers generate different sets of information. This

allows users to develop innovations distinct from those typically developed within

firms. Specifically, innovations embodying novel product functionality tend to be

developed by users. Second, users may choose to share their innovations within user

communities. The structures of these communities vary, but those observed to date

are built on the principles of open product design and open communication. Third,

innovations developed by users and freely shared within user communities have pro

vided the basis for successful commercial ventures. Data drawn from the windsurf

ing, skateboarding, and snowboarding industries illustrates these processes. Four

additional examples of the community-based model spanning fields and centu

ries are then presented. I conclude by reframing my view of the innovation process

as driven by the activities of firms and research institutions and discussing implica

tions for firms and policy.

Sports Equipment Innovation by Users and Their Communities

Both users and manufacturers contributed to the development of equipment innova

tions in the windsurfing, skateboarding, and snowboarding industries. Users are

defined as individuals or firms that expect to directly benefit from a product or service

by using it (von Hippel 1988). In contrast, manufacturers are those who expect to ben

efit from manufacturing and selling a product, service, or related knowledge; thus,

firms, entrepreneurs, and inventors seeking to sell ideas, products, or services are all

examples of manufacturers. To illustrate, snowboarders are users of snowboards. Firms

such as Burton and Gnu are manufacturers of snowboards. An inventor who hears that

there is a market for improved snowboard bindings and develops a new type of bind

ing with the intent of patenting and licensing it is categorized as a manufacturer.

The User Innovation Process in Three Sports

This section describes the process by which users and their communities develop

innovations. I begin with an example that illustrates this process. The following pas

sage describes how Larry Stanley and the community of windsurfing enthusiasts

around him innovated in the sport of windsurfing.

Mike Horgan and Larry Stanley began jumping and attempting aerial tricks and turns

with their windsurfing boards in 1974. The problem was that they flew off in midair

because there was no way to keep the board with them. As a result, they hurt their

feet and legs, damaged the board, and soon lost interest. In 1978, Jurgen Honscheid,

340
*
J Open Beyond Software

of West Germany, came to participate in the first Hawaiian World Cup and was

introduced to jumping. A renewed enthusiasm for jumping arose and soon a group
of windsurfers were all trying to outdo each other. Then Larry Stanley remembered

the Chip a small experimental board that he had equipped with footstraps a year

earlier for the purpose of controlling the board at high speeds and thought:
1

It s dumb not to use this for jumping.

I could go so much faster than I ever thought and when you hit a wave it was like

a motorcycle rider hitting a ramp you just flew into the air. We had been doing

that, but had been falling off in midair because you couldn t keep the board under

you. All of a sudden, not only could you fly into the air, but you could land the

thing. And not only that, you could [also] change direction in the air!

The whole sport of high-performance windsurfing really started from that. As

soon as I did it, there were about 10 of us who sailed all the time together and

within one or two days there were various boards out there that had footstraps

of various kinds on them and we were all going fast and jumping waves and

stuff. It just kind of snowballed from there.

News of the innovation spread quickly and instructions for how to make and attach

footstraps to a windsurf board were shared freely. Later, Larry Stanley, Mike Morgan,
and a small set of windsurfing friends would begin the commercial production and
sale of footstraps (and other innovations). Today the footstrap is considered a stan

dard feature on windsurf boards.

This example illustrates three key components of innovation development by users.

First, the act of use itself creates new needs and desires among users that lead to the

creation of new equipment and techniques. Second, user cooperation in communi
ties is critical to prototyping, improving, and diffusing solutions to those needs.

Working jointly allows rapid development and simultaneous experimentation, how
ever working jointly also requires that users openly reveal their ideas and prototypes
to others. Third, user innovations even after they have been freely revealed are

sometimes commercialized. Each of these three key components is discussed in detail

in the following subsections..

Discovery through use

Users generate and accumulate information based on product use in extreme or

novel contexts, the creation of new (unintended) uses for the product or service, and
accidental discovery in addition to intended product use. In contrast, marketing
teams at firms generally focus on understanding and improving the intended use(s) of

a product. For example, until the handles of childrens scooters accidentally fell off

1 Quotes from Larry Stanley in this chapter come from an interview of Stanley conducted by the
author.

Sports Equipment Innovation by Users and Their Communities
*
C 341

and children experimented with the resulting toy, it is unlikely that manufacturers

would have identified skateboarding as a fun activity. These differences in usage and

search patterns create an information asymmetry between users and manufacturers.

Because users and manufacturers hold different stocks of information, they will tend

to develop different types of innovations.

Two complementary sets of information are required for product development activ

ity. The first is information regarding need and the use context. As discussed in the

previous paragraph, this information tends to be generated by users. 2 The second is

solution information. This information may be held by both manufacturers who spe

cialize in a particular solution type and individuals with expertise in specific areas. It

can be a challenge to bring these sets of information together. Both need and solu

tion information can be difficult to communicate between individuals and can be dif

ficult to transfer from the site where it is generated to other sites in other words,

information is both tacit and sticky (Polanyi 1958; von Hippel 1994; Nonaka and

Takeuchi 1995). These difficulties in transferring information, combined with the

potential idiosyncratic nature of the request and communication costs, can make it

difficult for manufacturers and users to work together.

If information cannot be transferred, users and manufacturers will continue to hold

different sets of innovation-related information. Not surprisingly, innovators will

develop innovations based upon the information they possess. As a result, users and

manufacturers will tend to develop different types of innovations. Functionally novel

innovations will tend to be developed by users. These types of innovations allow users

to do qualitatively different things that could not be done previously, that is, they

create a new functional capability e.g., adding footstraps to a windsurfing board so

that
"jumping"

is possible. The development of such innovations requires a great deal

of information regarding user needs and use context information that is held by the

user; it makes little sense for manufacturers to
"guess"

what novel functions users

might want. Dimension-of-merit innovations may be developed by manufacturers or

users. Dimension-of-merit innovations improve known product performance param
eters e.g., making a snowboard less expensive, faster, or lighter. Manufacturers,

with their dedicated engineering and design staffs, can draw from their specialized

expertise to improve dimensions of merit known to be of value to customers to maxi

mize sales and market share. Users can also draw from what they know to make

dimension-of-merit innovations.

Technique is as important as equipment when it comes to actual use activity. I will focus on

innovations in equipment in this chapter, but innovations in technique are equally important

e.g., a surgeon with a new tool must devise a new surgical technique before using the tool. The

example at the beginning of this section that describes the development of footstraps provides a

particularly vivid illustration of the interplay between equipment and technique innovations.

342
* *

Open Beyond Software

Individual users hold limited stocks of information from which to draw when innovat

ing.
3 Even a user who knows exactly what functionality she desires may be unable to

independently create a solution that achieves that functionality, let alone create an effi

cient or elegant solution. Users frequently overcome this barrier by working together.

Communities: cooperation among users

Working together provides users with significant benefits. Working with others allows

users to access resources to develop their innovations. Working with others also allows

more rapid development due to simultaneous experimentation. To illustrate, consider

the following description given by windsurfing innovator Larry Stanley:

. . .we were all helping each other and giving each other ideas, and we d brainstorm

and go out and do this and the next day the [other] guy would do it a little better,

you know, that s how all these things came about. . .1 would say a lot of it stemmed

from Mike Morgan because, if something didn t work, he would just rush home
and change it or he d whip the saw out and cut it right there at the beach.

Cooperation among users can take many forms. Informal one-to-one cooperation
between users is frequent. Semistructured one-to-many interactions have also been

documented (e.g., through publications in newsletters, magazines, and web sites).

More structured cooperation within "innovation communities" is also widespread.
Innovation communities provide social structures and, occasionally, tools that facilitate

communication and interaction among users and the creation and diffusion of innova

tions. Open source software development communities are a good example of this.

Innovation communities are composed of loosely affiliated users with common
interests. They are characterized by voluntary participation, the relatively free flow

of information, and far less hierarchical control and coordination than seen in

firms. These characteristics allow for rich feedback and the potential to match

problems with individuals who possess the ideas and means to solve them. Due to

the varied needs and skills of the individuals involved, user communities are often

well equipped to identify and solve a wide range of design problems.

Innovation communities may be organized specifically around the development of a

particular product or may be organized around a particular activity, with innovation

being only one of the community s stated or emergent functions. The term community
rather than network, for example is used, because these groups often call themselves

communities and possess distinct social structures. User innovation communities

develop norms and rules, methods for attracting new members, and methods for main

taining their structure and integrity.

3 Extending the information asymmetry argument one step further, we see that individual users
and manufacturers will create and hold different stocks of information. As a result, different
users (or manufacturers) will develop different solutions and some users (or manufacturers) will
be able to more cheaply develop a solution or develop a better solution than others.

Sports Equipment Innovation by Users and Their Communities X 343

Two unique facets of innovation communities are their dedication to open product

design and open communication. Open product design means that users are able to

modify "tinker with" the product or service. Product design can be closed techno

logically (e.g., by distributing software code only in binary format) or via institu

tional and contractual mechanisms (e.g., warranties, intellectual property protection,

government law and regulation, licensing, or usage agreements). For example, pro

prietary software by its very nature prevents user innovation: the code is closed both

institutionally, through copyright protection, and technologically, through distribu

tion in the form of binary code. In contrast, open source software not only allows but

also encourages user innovation. This has two consequences: (a) user innovation will

only flourish in open source, and (b) users inclined to innovate will gravitate toward

open source. More generally speaking, open design is a prerequisite for facilitating

user innovation and the formation of innovation communities.

In addition to open design, communities working with complex products or sets of

information may choose to adopt modular project architectures. Modular design

involves building complex products from smaller subsystems that can be designed

independently yet function together as a whole. When a product or process is "mod

ularized," the elements of its design are split up and assigned to modules according

to a formal architecture or plan. Modularization makes complexity manageable;

enables multiple individuals to work simultaneously and later integrate their work

products; and makes it possible to accommodate unforeseen changes to the system,

so long as the design rules are obeyed (Baldwin and Clark 2000).

Innovation communities embrace open communication. By making information and

innovations accessible to as many interested users as possible in a timely manner, inno

vation communities increase the diversity of expertise that can be brought to bear on a

problem and allow the results of trial-and-error experimentation by multiple parties to

be exchanged. Both factors are likely to increase the likelihood that an effective solu

tion will be created and will reduce the time required to create such a solution.

User communities utilize a number of communication channels. Today the Internet

is one of the most common and is being used for much more than open source

software development. For example, kite-surfing enthusiasts have created an online

community where they share innovation-related information on board and sail

design. Mailing lists and web sites are well-suited communication platforms for com

munities. They allow many users to be reached very quickly and allow users to both

share and record information; they are relatively inexpensive, widely accessible, and

easily scalable. However, free and open diffusion of ideas and innovations occurred

even before the advent of the Internet. Users have historically shared and continue to

share ideas through word of mouth; at club meetings, conferences, and competi

tions; and in newsletters and magazines. For example, Newman Darby, who is cred

ited with the invention of the windsurfer, published blueprints and instructions for

making a windsurfer in Popular Science magazine.

344X Open Beyond Software

The open revelation of information and innovations is a necessary input into cooper

ative work. Communities provide several innovation-related benefits that might lead

an innovator to develop an innovation within or share a completed innovation with

the community. First, community members work with innovators and provide inno

vation-related ideas and assistance (Franke and Shah 2003; Harhoff, Henkel et al.

2003). To get assistance, one must reveal the problem and possible solutions. Given

that user-innovators are also enthusiasts who enjoy practicing their activity, much of

the "reward" for innovation is in future improvements and continued use. It thus

makes sense to reveal the innovation (unless the innovator believes the design is

ideal), since revealing opens the door to getting feedback and improvement ideas

from others. Interviews with innovators indicate that a desire to advance the technol

ogy motivates collaborative work4 :

We knew that we were just scratching the surface... The more we worked

together, the sooner we d go faster or do new things.

Second, innovators may share simply because they enjoy the innovation develop

ment process and working with others. This pattern emerged in this study, and in

research examining the activities and motives of software, radio, and automobile

enthusiasts (Weizenbaum 1976; Gelernter 1998; Torvalds 1998; Baring 2002):

If you did not share. . . [others] would not be able to keep up with you. To do or

experience something new and fantastic or go another step faster isn t much fun

when you shout "Wow! Did you see that!" and nobody is there to hear you.

Third, user-innovators willing to share their work with others generally want to pre

vent third parties from appropriating that work. Third-party appropriation would

prevent users from further modifying, improving, and producing the innovation.

Communities take a variety of precautions to protect their work and make sure that

it will remain available for others to use and modify. For example, public exhibition

and documentation act to prevent appropriation by the manufacturer and encourage

development by others. Protecting the innovation via available intellectual property

protection mechanisms and then allowing others to use and modify it freely can have

a similar effect. The sports enthusiasts described here engage in such practices, as do

communities of open source software developers (O Mahony 2003).

Finally, a generally unintended consequence of sharing the innovation in the commu

nity is the potential development of a market for the innovative product or product fea

ture and the opportunity to build a business to satisfy and further grow this market.

Sharing the innovation with others can result in both improvement and widespread

adoption of the innovation. While some adopters will be willing to construct the innova

tion for themselves, others will prefer to purchase the innovation, thereby paving the way
for firm entry. The process by which user innovations were commercialized in the wind

surfing, skateboarding, and snowboarding industries is described in the next section.

4 From interview with the author; interviewee unnamed for reasons of confidentiality.

Sports Equipment Innovation by Users and Their Communities J 345

Commercialization

Conventional wisdom argues that the open revelation of innovations and the com

mercialization of those same innovations for profit are antithetical. Yet a number of

innovating users both freely revealed their innovations and started firms that pro

duced those innovations for sale to others. The actions of snowboarding innovator

Dimitrije Milovich show how a user-innovator can both profit from an innovation

and contribute to community development and market growth. Milovich, granted a

patent for his snowboard design in 1971, made it known that he would not enforce

his patent against users and other firms in the industry. His actions encouraged

experimentation by users and the founding of new firms; both of which are likely to

have contributed to market development and growth. He also started his own snow

board manufacturing firm, called Winterstick. Many other user-innovators in these

sports did not patent their innovations purposefully or because they did not recog

nize the potential commercial value of the innovations but later started companies

that produced the innovations for sale to others. 5

Not only can free revealing and commercial activity coexist, but "free
revealing"

can

actually set the stage for profitable commercial production. As the innovation dif

fuses through the community, the reactions of community members to the innova

tion can be observed. Information regarding improvement ideas, usefulness, and new

uses is openly communicated and discussed, making the community a rich source of

information for innovating users, users, entrepreneurs, and existing firms seeking to

make investment decisions. This is especially true in the context of new or emerging

product categories where price and quantity information is not available and where it

is difficult or impossible to engage in market research; recall that at this stage, many
users are building their own products, distribution chains do not exist, and overall

awareness of the product has not penetrated to the mainstream.

As user-innovators observed interest in their innovations, many chose to commercial

ize the product. This process is straightforward in some cases, and highly emergent in

others. Some user-innovators did not think to produce their innovation for sale to oth

ers until after receiving a series of requests from enthusiasts who had heard of the

5 A small handful of user-innovators responsible for key innovations patented their innovations.

Their experiences suggest that the enforcement of intellectual property rights i.e., the

decisions of courts in upholding patents which have been granted is worthy of further

examination. In the few cases where the windsurfing, skateboarding, and snowboarding
innovations studied were patented and then challenged in court by firms wishing to profit from

the manufacture of the innovation without paying licensing fees to the innovator, courts tended

to overturn the patents. It was argued that these patents did not meet the "nonobviousness"

criteria required to be granted a patent: if a layperson could develop the innovation, how could

it be nonobvious? In contrast, firms tended not to challenge patents granted to users who were

also professionally trained engineers. The legal system is reliant on the knowledge held by

society and is influenced by society s assumptions, norms, and biases. It is possible that user-

innovators will not be afforded the same rights as inventors, formally trained scientists and

engineers, and firms until the importance of innovation by users is more widely recognized.

34G x C Open Beyond Software

equipment from other enthusiasts or in newsletters and magazines interested in pur

chasing a copy of the innovation. Handmade copies of the equipment were initially

constructed for free or at cost. Eventually, some user-innovators realized that they

could sell the equipment at a profit and began to manufacture and market the product.

Firms founded by users in these industries functioned as lifestyle firms for many
years. By lifestyle firm, I mean a firm with 10 or fewer employees that generates

modest revenues for innovating users while continuing to innovate and advance their

skills in a sport. These firms were initially operated out of garages or spare rooms. In

their early years, these firms generally had no capital equipment beyond portable

power tools and produced products one by one or in small lots. User-innovators who
founded firms typically worked full time at other jobs and often had low opportu

nity costs for their time.

The activities of users who founded firms highlights the multiplicity of motives at play,

and cautions us to not think of entrepreneurial motivation in purely material terms.

First, the innovative activity observed does not appear to be driven by pecuniary
motives as is commonly thought; rather, it was driven by motives such as use, enjoy

ment, challenge, and a desire to build the sport. Second, for many user-innovators, the

benefits of starting a firm were not merely financial. Starting a firm also allowed them

to spend more time practicing and building the sport they enjoyed, and as the busi

ness became more profitable, they could afford to give up other forms of employment
and focus fully on the sport.

Over time, many of these firms became leaders in their fields and many were regarded as

makers of exceptionally high-quality equipment. Several continue to operate indepen

dently, while the brands established by others have been acquired by larger manufactur

ers. Many of today s well-known brands in the windsurfing, skateboarding, and snow-

boarding industries including Windsurfing Hawaii, Gnu, Winterstick, and Dogtown
Skates were created by innovative enthusiasts who later became entrepreneurs.

How Important Is Community-Based Innovation in These Sports?

In 2000, I conducted a longitudinal study of the development and commercializa

tion histories of 57 key equipment innovations in the windsurfing, skateboarding,
and snowboarding industries (Shah 2000). 6 The aim of the study was to understand

the extent to which users did or did not contribute to innovative and commercial

The innovations were identified with the assistance of multiple experts in each industry.
Detailed information on each innovation was gathered through one-on-one interviews with a

variety of actors innovators, designers, early manufacturers, current manufacturers, magazine
editors, book authors, friends and acquaintances of the innovator who were involved in the
innovation process, and occasionally professional competitors in the sport. Whenever possible,
the innovator was interviewed to get a better understanding for the local information employed
and the specific circumstances, needs, and problem-solving methods surrounding the
innovative activity. Innovator is defined as the individual or set of individuals who first develops
a working prototype of an equipment innovation.

Sports Equipment Innovation by Users and Their Communities X 347

activity in these sports. The study found that users and their communities were criti

cal to the emergence and development of these sports.

Sports equipment users developed the first-of-type innovation in each of the three

sports studied, that is, users developed the first skateboard, the first snowboard, and

the first windsurfer. Users also developed 57% of all major improvement innova

tions in the sample, and manufacturers developed 27% of the major improvement
innovations. The remaining 16% were developed by other functional sources of

innovation, such as joint user-manufacturer teams or professional athletes. 7

Product origins: first-of-type innovations

In each of the three sports studied, users developed the initial first-of-type innova

tion. In each instance, the innovator(s) engaged in the process of bricolage, using the

skills and materials at hand to create the innovation.

For example, skateboarding began in the early 1900s. At that time, children played

and rode on wooden scooters, often homemade, consisting of a board with roller

skate wheels and a handle attached for control. Over the next five decades, adventur

ous users removed or did without the handle (it often broke off), thereby creating the

first skateboards.

In the case of snowboards, people have been trying to stand up on their sleds for ages.

Experts agree, however, that the "formal" history of the snowboard began with Sherman

Poppen s Snurfer (Howe 1998; Stevens 1998). In 1965, Poppen noticed his daughter

and a friend standing up on their sleds as they slid down a hill. He went to his work

shop and used the materials available to create the first prototype two skis bound

together with a string attached at the nose for stability of what would later become

known as the Snurfer (a name created by combining the words snow and surfer).
8

In the case of windsurfing, an individual user, Newman Darby, was the initial inno

vator. In 1964, Darby, a Pennsylvania sailboat enthusiast and amateur boat builder,

created the first windsurfer by fixing a universal joint to the base of a mast on a float

ing platform. The universal joint a fundamental feature of the windsurfer allowed

the board and mast to move relative to one another. This in turn meant that the

sailor could directly manage the direction of sail by standing up and holding the

boom and tipping the mast. Darby recollects his experience:

I first designed the universal joint back in 1948 to use, but I was afraid it would

be too dangerous... But [with designs lacking the universal joint] every time the

7 In the study, users and professional athletes are treated as distinct. Users benefit directly

through product use. In contrast, professional athletes derive financial and career-related

benefits from activities such as winning or placing well at competitions and being awarded

advertising contracts.

8 Whether Poppen was a user is not clear, however his activities were first inspired and

appreciated by a group of users important to him his daughter and her friend!

348 X Open Beyond Software

wind blew too strong, it blew the sail out of the socket. So I decided, "Well I m

going to have to use the universal
joint."

I was a little afraid it would break your

legs if you went over. Then I started developing one using rubber hoses. . .1 even

tried a metal universal joint, and I finally devised one using ropes (Darby 1997).

Major improvement innovations

Manufacturers developed 27% (n=12) of the major improvement innovations in the

sample; users developed 57% (n=26). 9 Major improvement innovations are an

important subset of overall innovative activity in the sport. They are those equip

ment innovations identified by multiple experts as being most critical to the develop

ment of the sport.

An existing manufacturer developed two major improvement innovations in the sam

ple. Existing manufacturers might (theoretically) be of two types: those in closely

related porduct categories (e.g., sailing, skiing, surfing) and those with production or

design capabilities useful in mass-producing the product. The existing manufacturer

observed in this study NHS was a small, Northern California firm founded by three

surfing buddies to design and build surfboards. A surplus of fiberglass and a deficit of

customers led the trio to begin designing skateboards. NHS ultimately developed two

key skateboarding innovations: the use of precision ball bearings and skateboard truck

modifications that allowed each wheel to move independently of the others.

Manufacturers organized specifically to produce for the sport in question developed three

major improvement innovations in the sample. For example, F2, which was initially

organized to distribute and manufacture windsurfers for the European market, is

believed to have pioneered the use of polyester film as a sail material.

Existing sports equipment component suppliers developed seven major improvement

innovations in the sample. These innovations generally involved transferring specific

technology and know-how from an existing sport to the novel one. For example, a

maker of fins for surfboards was asked to design a fin to solve some windsurfer-spe

cific problems. Similarly, a producer of sailboat sails worked to improve the design of

windsurfing sails and made several innovations. In most cases, the innovative com

ponents suppliers were small craft shops run by their founder-owners.

Users and user-manufacturers developed 58% of all improvement innovations in the

sports studied. The term user-manufacturer describes innovative users who founded

firms after prototyping and beginning to refine an innovation(s) and, in most cases,

also after sharing the innovation(s) with others. 10 These individuals benefited from

9 Percentage calculations throughout the paper exclude nine innovations for which the innovator

is not known.

10 The first innovation produced by user-manufacturers was made prior to the creation of a firm.

Subsequent innovations made by user-manufacturers with 10 or fewer employees are included in

this category. Innovations developed by user-founded firms that grew beyond 10 employees are

classified as manufacturer innovations to conservatively estimate innovative activity by users.

Sports Equipment Innovation by Users and Their Communities * * 349

their innovation(s) both through use and financially. As discussed earlier, the firms

they founded are generally best characterized as small, lifestyle firms rather than

mass market producers.

Community-Based Innovation and Development: An Even Broader

Phenomenon

We ve seen how users and their communities shaped the windsurfing, skateboard

ing, and snowboarding industries and we observe that open source software commu

nities have and continue to shape the software industry. Are these unique cases or

are they representative of a broader phenomenon? It appears that users will innovate

whenever they have the means and interest to do so. The following four examples

show that community-based innovation has been influential in shaping product

classes, industries, and even scientific disciplines for hundreds of years.

The Automobile

Franz (1999) describes innovations in automotive accessories made by middle-class

American leisure travelers during the early 1900s. She reports that users built and

added such features as radiator hoods, safety devices, interior heaters, automobile

tops, trunks, reclining seats, and electric ignitions to their cars. Some even replaced

the standard body altogether. "The rewards of tinkering lay. . . in the cultural space of

leisure where amateurs produced their own narratives of ingenuity and claimed

knowledge of the new machine" (Franz 1999, p. 149).

Many of these innovators shouldered the cost of disseminating news of their innova

tions to other automobile enthusiasts. In the early 1900s, a high number of journals

for automobile enthusiasts "written by and for devotees of the new sport
"

(Franz

1999, p. 198) published innovator-written "how-to" articles. Existing manufactur

ers often learned of innovations via the innovators themselves, through requests for

repairs, phone calls suggesting that the manufacturer adopt the innovations, and arti

cles in the hobbyist journals (one of the journals was sponsored by Ford). Despite

these avenues for information transfer and the fact that many innovating users did

not patent their innovations, substantial time lags existed between the time an inno

vation was made and communicated to other users and when manufacturers incor

porated it into commercial products.

The Personal Computer

As is well known, the personal computer revolution was not instigated by R&D sci

entists and engineers toiling in well-equipped labs. The personal computer was ini

tially developed by hobbyists working after hours in garages, warehouses, base

ments, and bedrooms (Freiberger and Swaine 2000). These individuals triggered a

revolution through their own fascination with technology and willingness to openly

350
*

C Open Beyond Software

share hard-won technical insights with fellow enthusiasts through local computer

clubs (such as the Homebrew Computer Club) and hobbyist electronics magazines

such as Popular Electronics and Radio Electronics. Over time, many hobbyists started

companies to sell copies of their work to those unwilling or unable to construct their

own. In fact, many well-known names in the computer and software industry today,

including Bill Gates, Paul Allen, and Steve Wozniak, were active hobbyists before

they became entrepreneurs.

User Firms in the 18th Century Iron Industry

We ve seen many examples of individual users working together, but there are also

examples of userfirms working together. All firms use products that they do not sell to

consumers e.g., the information technology activities of investment banks. Allen s

(1983) study of the 18th
century iron industry found that firms cooperated and shared

information pertaining to the design and construction of blast furnaces. Improved blast

furnace design increased the temperature of the blast and significantly reduced fuel

consumption. According to Allen, the science behind blast furnace technology was not

well understood. No one could predict how design changes would affect furnace per

formance, so development took the form of trial-and-error learning. Firms were lim

ited in their ability to independently experiment as construction costs were high. By

sharing experiences with different designs, firms could multiply the number of experi

ments from which to learn and collectively improve the technology.

Amateur Astronomy

Users also contributed innovations and discoveries to the scientific disciplines. For

example, amateurs played a significant role in the development of astronomy equip

ment (Lankford 1981). They pioneered the use of reflecting telescopes and applied

photographic techniques to the study of the stars. Amateurs published papers in

journals alongside professionals, received the same awards, and attended the same

meetings. The activities of professionals and amateurs were similar, but because ama

teurs were allowed to take greater risks than professionals (who were concerned

about their careers), the two groups often came into conflict. By the early 1900s,

amateurs were unable to compete with the activities of trained astrophysicists, largely

because only those with specialized training were allowed to access the increasingly

sophisticated and expensive technologies housed within universities and research

institutions. By restricting access to tools and technology, professionals effectively

limited the ability of amateurs to contribute to and challenge the field.

Today thousands of amateurs are once again making meaningful contributions to the

field of astronomy. A revolution triggered by three new and inexpensive technologies has

reignited amateur astronomy over the past two decades (Ferris 2002). First, there was the

creation of the Dobsonian, a powerful telescope built from inexpensive materials:

Community-Based Innovation and Development: An Even Broader Phenomenon * C 351

In the early 1950s, John Dobson spied a 12-inch piece of porthole glass on a

friend s table and realized that it could be polished with sand into a reflecting

telescope mirror. As an ascetic monk with no money, he was forced to scrounge
for materials, cobbling the mount from such humble objects as a plywood box,

the cardboard cores of garden hose reels, and roof shingles. Then he pointed his

homemade contraption at the moon and was astonished by how much detail

he could see. Craters, mountains, crags leapt to life. "It was like I was coming in

for a
landing,"

he says. His eventual design for an affordable Newtonian reflect

ing telescope would later be named the Dobsonian (Campbell 2004).

Dobson actively reached out to other enthusiasts and provided them with instruc

tions for building the telescopes. Enthusiasts willing to forego shortcuts can build a

Dobsonian for about $20; for a few hundred dollars they can assemble one using

materials available at most hardware stores or from a kit. Then came the creation of

the CCD, a highly light-sensitive chip able to record very faint starlight with far

greater accuracy than a photograph. Finally, the Internet multiplied the power of

individual efforts by enabling rapid collaborative work.

Armed with Dobsonian telescopes and CCD sensors, thousands of amateurs are explor

ing space and recording events that might otherwise go unnoticed by professionals.

This community of globally linked amateurs share their observations and expertise

within minutes via email, community web sites, and mailing lists as they race to docu

ment, understand, and corroborate their findings. They also meet from time to time at

meetings and conferences, and keep abreast of developments through magazines.

In these examples, we see the importance of use and community. Use drives the

emergence and recognition of heterogeneous needs and desires. Community allows

rapid experimentation and allows individuals with differing expertise to bring their

skills and knowledge to bear on a particular problem. Users in a wide variety of fields

work within communities where the open exchange of ideas, prototypes, and

resources is commonplace.

Although communities are rarely created for the express purpose of encouraging and

supporting innovation, many communities fulfill this function. The social structure

provided by communities facilitates the development of user innovations by making
resources ideas, expertise, skills, and physical resources more easily accessible

and by creating incentives that support the sharing of resources and the creation and

diffusion of innovation.

Refraining: Where Does Innovation Come From?

Why have we overlooked the fact that so much creative and innovative activity stems

from the everyday behavior of regular people? Three factors are likely to have played

a role: Schumpeter s legacy, the low visibility of user-innovators outside their own

community, and the deliberate creation of a consumer culture.

352 ^ C Open Beyond Software

Firms and entrepreneurs are generally recognized as the primary agents of product

change and economic progress (Schumpeter 1934; Nelson and Winter 1977; Dosi

1982). Firms are motivated by profits and invest in research and development to create

new products for consumers. As the instigators of change, it is incumbent upon firms to

either educate the consumer to want what they produce or to identify and satisfy con

sumer needs. The consumer s role is a passive one: producers, not consumers, innovate

and consumer preferences do not change without producer influence. The consumer

merely chooses to make or not make a purchase based on price and comparison with

other products and services. In broad and oversimplified terms, this is what is taught to

students in management, marketing, economics, and engineering. There is no simple

term by which to refer to the
"everyday" person who also innovates. Enthusiast, hobby

ist, tinkerer, and developer are all possibilities; but they all carry distinct connotations.

The term user-innovator is better, but is neither perfect nor widely used.

The relatively low visibility of user-innovators may have also prevented us from

noticing their activities or viewing them as more than mere anomalies: while firms

are likely to heavily promote their innovations to the mass market, consumer innova

tions are more likely to be diffused through word of mouth or be written up in small,

specialist newsletters, journals, or, more recently, web sites. Although it appears that

users have always innovated, the advent of the Internet made their activities more

visible to those outside of innovation communities and the success of some open
source software development provided an extreme example of the power and effec

tiveness of user communities.

Nobel (1977) argues that the rise of the corporation and the engineer in the 1900s

led to "the deliberate creation of a consumer culture, through advertising, to absorb

and diffuse potential revolutionary energies." Institutions, namely corporations,

sought to identify themselves with innovation, and relegate the consumer to a pas

sive role (recall that historically individuals were anything but passive, producing
much of what they used and consumed themselves). Corporations worked to inhibit

innovation by consumers through a variety of means, including advertising and cre

ating closed designs (i.e., product designs that made it difficult for a consumer to

alter or tinker with the product).

As a result, two characters dominate the landscape of managerial, economic, and

sociological thought in the area of innovation: firms and consumers. Firms produce.

Consumers consume. As we have seen, however, users have played and continue to

play a dramatic role in the development, diffusion, and commercialization of innova

tions. What does this mean for government policy and firm strategy?

Building and Preserving the Intellectual Commons

The commons are a crucial resource for fostering innovation. Keeping a resource in the

commons both allows others to draw upon the resource and mitigates the number of

strategic games played by those seeking to influence the innovative and commercial

Reframing: Where Does Innovation Come From?
*

353

activities of competitors and potential competitors (Lessig 2001a, p. 72. For additional

data and analysis regarding the strategic uses of patents and copyrights, see Parr and

Sullivan 1996; Hall and Ziedonis 2001; and Shapiro 2001). Government policy plays

an important role in developing and maintaining these commons.

The goal of intellectual property policy is to promote technological and cultural

progress for the benefit of society. One of the underlying assumptions of these poli

cies is that investment in innovative and creative activities is highly contingent on the

ability to derive pecuniary profits from that investment. To that end, government

policy in much of the world seeks to strike a balance between granting temporary

control rights over innovative and creative work to originators of the work, and

allowing others to access and build upon that work. These temporary control rights

take the form of patent and copyright protection; patents generally offer protection

for 14-20 years, copyrights for 95 years.

From the perspective of community-based innovation, however, benefit is derived

primarily through use rather than pecuniary profit. As the examples in this chapter

illustrate, users working within communities actively choose to partake of the bene

fits derived from allowing others to freely use their work rather than pursue benefits

derived from control. Thus, protecting the ability of users to tinker and share their

work is critical for fostering community-based innovation; the provision and exer

cise of exclusionary control rights, in contrast, might do little more than act to deter

community-based innovation.

Both patent and copyright laws affect the users
"right"

to tinker. Here, I will focus on

some issues around fair use to show how these laws might influence community-
based innovation. Fair use makes copyrighted work available to the public as raw

material without the need for permission or clearance, so long as such use promotes

progress. What activities do and do not constitute fair use? The answer to this ques

tion is unclear in many instances, providing users with little guidance regarding the

legality of their actions. Law in this area is complicated and continuously evolving

through legislative and judicial action. These decisions, however, do not move in

lock-step. From the perspective of protecting fair use, the Digital Millenium Copy

right Act (DMCA) is a setback and Sony v. Connectix (2000) is a victory.

Many are concerned that the DMCA has gone too far in restricting fair use in the dig

ital domain (see, for example: Samuelson 1999; Nimmer 2000). The DMCA was

intended to prevent consumers from illegally making copies of protected works.

Unfortunately, the DMCA can also have a number of unintended side effects, one of

which is preventing users from modifying the products that they purchase. Specifi

cally, the DMCA outlaws technologies designed to circumvent technologies that pro

tect copyrighted material. "The trouble, however, is that technologies that protect

copyrighted material are never as subtle as the law of copyright. Copyright law per

mits fair use of copyrighted material; technologies that protect copyrighted material

need not. Copyright law protects for a limited time; technologies have no such limit.

354 X Open Beyond Software

Thus, when the DMCA protects technology that in turn protects copyrighted mate

rial, it often protects much more broadly than copyright law does. It makes criminal

what copyright law would
forgive" (Lessig 200 Ib).

The judgment of the Ninth Circuit Court of Appeals in Sony v. Connectix upheld and

extended the limits of fair use. In the case, Sony alleged that Connectix illegally

reverse engineered the Sony BIOS to develop its Virtual Game Station, which played

Sony PlayStation games on Windows. The court concluded that "Connectix s reverse

engineering of the Sony BIOS extracted from a Sony PlayStation console purchased

by Connectix s engineers is protected as a fair use. Other intermediate copies of the

Sony BIOS made by Connectix, if they infringed Sony s copyright, do not justify

injunctive relief." The court determined that it was acceptable for Connectix to not

just copy and study Sony s code, but to actively use that code in the process of devel

oping a noninfringing product and make multiple copies of the code. The judgment

established new precedents in fair use law, opening up some areas for fair use that

were previously risky from a legal perspective.

Restricting the ability of others to build upon ideas may slow the overall rate of inno

vation; the modification of existing ideas, products, and artistic work is the source of

much creative and innovative production by firms, researchers, and users. Evidence

of this can be found in many areas. Consider, for example, the development of Linux

versus Minix (DiBona, Ockman et al. 1999, Appendix A: The Tanenbaum-Torvalds

Debate). Software developers were free to tinker with Linux and adapt it to suit their

own needs and desires. They were also able to share what they had learned with one

another and build upon each other s efforts. In contrast, enhancements were gener

ally not accepted to Minix to preserve its integrity as a teaching tool. As a result, dis

gruntled Minix users chose to adopt and work to improve Linux. Also consider

the "anticommons" effect. The anticommons effect is a side effect of patent protec

tion in fields where innovation is cumulative. A commons is a resource that every

one has the right to use. In contrast, an "anticommons" is a resource which many
have the right to prevent others from using (Heller 1998; Buchanan and Yoon 2000).

In such a context, innovation may be stifled as innovators become reluctant to inno

vate because too many others have the right to prevent or raise the costs of use and

commercialization (see Heller and Eisenberg 1998 for evidence from biomedical

research). Finally, recall the importance of tinkering and bricolage in the examples of

community-based innovation presented in this chapter.

The impact of intellectual property policy on the activities of innovation communi

ties deserves careful consideration. As a society, there are important decisions to be

made regarding intellectual property protection that will influence not only the rate

of technological progress, but also control over its direction, our own ability to

"tinker" with and adapt those products to suit our own desires, and the variety of

commercial products that are available to us.

Refraining: Where Does Innovation Come From?
*
C 355

Firm Strategy

Not all firms are choosing to enclose their intellectual property inside hermetically
sealed black boxes. Some firms ranging from video-game makers to manufacturers

of airplane kits to Lego have found that it is in their self-interest to permit and even

encourage innovation by user communities. Contributions by user communities can

complement a firm s own R&D and marketing efforts, extend a product s life, and

cater to market niches not targeted by the firm s marketing department. As dis

cussed, user communities often generate a variety of functionally novel and incre

mental, dimension-of-merit innovations; firms can observe which of these innova

tions are adopted by community members. Firms, with their specialized engineering,

design, manufacturing, and marketing departments, can then streamline, promote,
and produce these innovations for the many consumers who are unable or unwilling
to construct the product or service themselves. Firms may choose to incorporate

these innovations into the core product or service, sell these features as optional

modules, or allow a third party to freely distribute or sell the modules.

User groups often form and operate independently of firms. Many groups, however, are

open to participation by firms so long as firms support the general goals of the commu

nity and abide by the community s rules, norms, and practices. Businesses seeking to

encourage user activity around their products have found it useful to open all or part of

their product design and establish or support forums where users can congregate and

share information (see von Hippel and Katz 2002; Jeppeson 2005, in press).

Building a business around freely revealed user innovations is more straightforward

when the product is physical rather than virtual. In the case of physical products, a

fraction of users will build their own, but many will prefer the convenience of purchas

ing a copy. In other words, even if product development by users displaces that of

manufacturers, manufacturers can still profit from manufacturing activities and prod
uct innovation. Manufacturers may compete against each other for customers based on

complementary assets such as brand name, and distribution and production capabili

ties. Firms may also choose to provide services that go with the product e.g., in the

case of sports equipment, lessons, facilities, or equipment maintenance.

The case of virtual products is more complicated for manufacturers, because many
more users will be able to access and deploy the product themselves. One option is

to sell services that support the product. A second option is to build and sell propri

etary platforms on which users can develop and build their own products.

There are two general approaches to platforms the "walled
garden"

and the
"open

range."
Walled gardens place limits around the ability of others to build on and use

the platform. For example, this may mean that outside vendors are restricted in their

ability to offer commercial products based on the platform or that the platform

owner controls the content available to users. While users and outside vendors may
have considerable latitude within the walled garden, the platform owner often retains

ultimate control rights and establishes both the boundaries and rules of the garden.

356 ^ C Open Beyond Software

Open ranges, in contrast, allow users and other firms to build on and use the plat

form in limitless ways. The platform owner typically retains few, if any, control

rights. NTT DoCoMo explicitly created a walled garden within a larger open range,

with respect to content, when setting up its i-mode wireless Internet service. "Offi

cial" content partners subject to strong editorial and usability rules populate the

walled garden, however users are also allowed open Internet access to "unofficial"

sites. There is a long-standing debate between proponents of the walled garden and

open range approaches. However, from the perspective of the platform owner, it is

not yet clear which of these approaches will yield greater profits.

Conclusion

Community-based innovation has contributed to technological and industrial

advances in many fields. Users are at the center of this model: they discover new

needs and desires, cooperate with other users within innovation communities, and

sometimes even commercialize their innovations. The community-based innovation

model is pervasive across time and context, contributing to the development of phys

ical and virtual products and shaping products, industries, and scientific disciplines.

Yet, for a number of reasons, communities of users often go unnoticed by firms, poli

cymakers, and society at large. Some firms have, however, recognized the contribu

tions of users and their communities and actively work alongside them, providing

consumers with novel and improved products and services and creating a revenue

stream that contributes to the firms profits. As intellectual property policy evolves,

policymakers ought to consider the impact of proposed policy changes on the ability

of users to innovate. Preserving the ability of users to collectively tinker and modify

is necessary for continued innovation of the type that has provided us with many of

the products and tools, and a substantial amount of the knowledge and know-how

that we rely upon and enjoy on a daily basis. In short, the principle that Richard

Stallman succinctly defined in the GNU General Public License that people must be

free to use, modify, and distribute applies to creative and innovative activity in

many fields, not just software. 11

References

R. C. Allen, "Collective Invention." Journal of Economic Behavior & Organization 4,

1983: 1-24.

C. Baldwin and K. Clark, Design Rules. (Cambridge, MA: BBS Press, 2000).

J. M. Buchanan and Y. J. Yoon, "Symmetric Tragedies: Commons and Anti-Commons."

Journal of Law and Economics 43, April 2000: 1-13.

11 Sincere thanks to Carliss Baldwin, Glenn, Hoether. Mark Stone, and Rosemarie Ziedonis for

their feedback and enthusiasm.

Conclusion X 357

B. Campbell, "The Father of Street-Corner
Stargazing." The New York Times. (Septem

ber 1, 2004): DIG.

N. Darby, "Naomi & Newman Darby: The Interview." American Windsurfer 5, no. 1,

1997: 38-52, 94.

C. DiBona, S. Ockman, et al. (eds.), Open Sources: Voices from the Open Source Revolu

tion (Sebastopol, CA: O Reilly, 1997).

G. Dosi, "Technological Paradigms and Technological Trajectories: A Suggested

Interpretation of the Determinants and Directions of Technical Change." Research

Policy 11, no.3, 1982: 147-162.

T. Ferris, Seeing in the Dark: How Backyard Stargazers Are Probing Deep Space and

Guarding Earthfrom Interplanetary Peril (New York, NY: Simon & Schuster, 2002).

N. Franke and S. Shah, "How Communities Support Innovative Activities: An Explo
ration of Assistance and Sharing among End-Users." Research Policy 32: 157-178.

K. Franz, "Narrating Automobility: Travelers, Tinkerers, and Technological Author

ity in the Twentieth
Century" (Unpublished Doctoral Dissertation). (Providence, R.I.:

Brown University, 1999).

P. Freiberger and M. Swaine, Fire in the Valley (New York, NY: McGraw-Hill, 2000).

D. Gelernter, Machine Beauty (New York, NY: Basic Books, 1998).

B. H. Hall and R. H. Ziedonis, "The Patent Paradox Revisited: An Empirical Study of

Patenting in the US Semiconductor Industry, 1979-95." Rand Journal of Economics

32, no. 1,2001: 101-128.

D. Harhoff, J. Henkel, et al., "Profiting
from Voluntary Information Spillovers: How

Users Benefit by Freely Revealing Their Innovations." Research Policy 32, no. 10,

2003: 1753-1769.

K. Haring, "Technical Identity in the Age of Electronics" (Unpublished Doctoral Dis

sertation). (Cambridge, MA: Harvard University, 2002).

M. A. Heller, "The Tragedy of the Anticommons: Property in the Transition from

Marx to Markets." Harvard Law Review 111, 1998: 621.

M. A. Heller and R. S. Eisenberg, "Can Patents Deter Innovation? The Anticommons

in Biomedical Research." Science 280. no. 5364, 1998: 698-701.

S. Howe, (Sick) A Cultural History of Snowboarding (New York, NY: St. Martin s Grif

fin, 1998).

L. B. Jeppeson, "User Toolkits for Innovation: Consumers Support Each Other." Jour

nal of Product Innovation Management (2005, in press).

358 * C Open Beyond Software

J. Lankford, "Amateurs and Astrophysics: A Neglected Aspect in the Development of

a Scientific Specialty."
Social Studies of Science 11, no. 3, 1981: 275-303.

L. Lessig, (2001a) The Future of Ideas (New York, NY: Random House, 2001).

L. Lessig, (2001b) "Jail
Time in the Digital Age."

The New York Times, July 30, 2001:

A 17.

R. R. Nelson and S. G. Winter, "In Search of Useful Theory of Innovation." Research

Policy 6, no. 1, 1977:36-76.

D. Nimmer, "A Riff on Fair Use in the Digital Millennium Copyright Act." University

of Pennsylvania Law Review 148, 2000: 673-742.

D. Nobel, America by Design: Science, Technology, and the Rise of Corporate Capitalism

(New York, NY: Alfred A. Knopf, 1977).

I. Nonaka and H. Takeuchi, The Knowledge-Creating Company (New York, NY:

Oxford University Press, 1995).

S. O Mahony, "Guarding the Commons: How Community Managed Software

Projects Protect Their Work." Research Policy 32, no. 7, 2003: 1179-1198.

R. L. Parr and P. H. Sullivan, Technology Licensing: Corporate Strategies for Maximizing

Value (New York, NY: John Wiley & Sons, 1996).

M. Polanyi, Personal Knowledge: Towards a Post-Critical Philosophy (New York, NY:

Harper Torchbooks, 1958).

P. Samuelson, "Intellectual Property and the Digital Economy: Why the Anti-Circum

vention Regulations Need to Be Revised." Berkeley Technology Law Journal (14, 1999).

J. Schumpeter, The Theory of Economic Development (Cambridge, MA: Harvard Uni

versity Press, 1934).

S. Shah, "Sources and Patterns of Innovation in a Consumer Products Field: Innova

tions in Sporting Equipment." MIT Sloan School Working Paper #4105. Cambridge,
MA: 2000.

C. Shapiro, Navigating the Patent Thicket: Cross Licenses, Patent Pools, and Standard-Set

ting. Innovation Policy &&gt; the Economy. A. Jaffe, J. Lerner and S. Stern. (Cambridge,
MA: MIT Press, 2001).

B. Stevens, Ultimate Snowboarding (New York, NY: Contemporary Books, 1998).

L. Torvalds, "First Monday Interview with Linus Torvalds: What Motivates Free-Soft

ware Developers?" First Monday 3, no. 3, 1998.

E. von Hippel, The Sources of Innovation (New York, NY: Oxford University Press,

1988).

E. von Hippel, "Sticky
Information and the Locus of Problem Solving: Implications

for Innovation." Management Science 40, no. 4, 1994: 429-439.

E. von Hippel and R. Katz, "Shifting
Innovation to Users Via Toolkits." Management

Science 48, no. 7, 2002: 821-833.

J. Weizenbaum, Computer Power and Human Reason: From Judgment to Calculation

(San Francisco, CA: W. H. Freeman, 1976).

3GO
*
C Open Beyond Software

CHAPTER 22

Steven Weber

Patterns of Governance

in Open Source

The hardest problem facing a political community is how to increase the probability

that the whole will be greater than, not less than, the sum of its parts. People join

together voluntarily to solve problems because they believe that the group can do

things that an individual cannot. They also believe (in some abstract sense and often

implicitly) that the costs of organizing the group and holding it together will be

smaller than the benefits the group gains. If you put aside for the moment the affec

tive and emotional needs that individuals satisfy in groups and focus instead on the

part of politics that is about problem solving, the bet that people make when they

enter a political community is simply that "none of us is as smart as all of us"

maybe not on any particular issue or at any particular moment, but on the vast set of

problems that human beings confront and try to manage over time.

It doesn t have to work out that way. Everyone has been part of a community or a

company where the whole is less smart than the individuals who comprise it. Politi

cal systems often seem to suffocate under their own organizational costs not just

national governments, but smaller systems like city councils and co-op boards. And

even if a community does create net benefits for at least some segment of the group,

the distribution of those benefits can be so grossly unequal that most of the commu

nity members would be better off on their own. Get the balance wrong, and you can

easily create situations where no one is as dumb as all of us.

These are very old problems confronting political thinkers. The rise of the Internet adds

a small but significant twist by making it much easier to discover potential collaborators

and pull together "affinity groups," networks of subcontractors, outsourced component
makers for production systems, and the like all of which are political communities that

aim to solve some kind of problem. The core idea is joint production at a distance, the

opening up of a universe of collaborative projects in which physically separated individ

uals contribute to the creation and refinement of a solution. Because the opportunities

for creating collaborative communities have been expanded greatly by Internet technol

ogy, the boundaries and borders of existing communities are open for redefinition, and

the possibility for new communities seems vast.

Which means that the stakes are high for getting it
"right,"

or at least getting it right

enough. This, I believe, is where some of the most important lessons of open source

collaboration are likely to emerge. This chapter poses the question this way: if pat

terns of collaboration within open source communities were to become surprisingly

pervasive, or pervasive in surprising places, what would this suggest about institu

tional design for communities of knowledge and practice in politics, outside of the

realm of software or even technology per se?

To answer that question takes at least four steps. I first bound the question by limit

ing the argument to a class of problems most likely susceptible to open source-style

principles. I then describe more precisely some of the theoretical issues at stake in

group problem solving. The third section of the chapter lays out seven design issues

that follow from the experience of what works (and does not work) within open
source communities. The final section suggests some actionable implications. If we
view the politics of problem solving through this kind of prism, what might or

should we do differently?

The Empirical Problem Set: What Are We Aiming At?

Consider this proposition: some significant subset of social problems that communities

confront are (or can be) structured as knowledge creation and/or problem-solving

domains similar to the
"problems"

that the open source software community has found

innovative ways to "solve." It would follow that the tools and governance principles of

the open source software community, in some modified form, could yield new

approaches to community organization and problem solving that build on but go

beyond what is currently known about traditional institutions of formal government as

well as the more informal notions of "civil
society"

and "communities of
practice."

I think the proposition is defensible at least for a class of complex social problems
that have three characteristics. The problems we are thinking about should be multi

dimensional in the sense that they call on several different realms of expertise. They
should be large in scope, in the sense that they require some kind of division of labor

to make progress. And they should be complex in their essence, not just in their

implementation. I mean here problems that are substantively and inherently difficult

to solve, not difficult only because of the failure of well-understood social or politi

cal processes to yield optimal outcomes. An example: if you want to build a new

3G2
*

Patterns of Governance in Open Source

100-story office building in Manhattan, you will need to pull together many differ

ent realms of expertise and organize a rather sophisticated division of labor. Some of

the problems you confront will be idiosyncratic social and political issues the met

alworkers will strike because they know you really need them today, the neighbors
will complain about the noise, and deliveries of certain materials will get "held up

unexpectedly" somewhere until you pay a friendly fee to the person who can "fix"

that problem. But even if you had the magic solution to all these issues, it would still

be hard to create this building simply because it is a difficult engineering task to put

together a mountain of steel, concrete, and glass that will hang together and stand up
to wind, rain, gravity, and use over all the years that it will be there. It would still

cost more and take longer than expected.

The analogy to software development should be obvious. Complex software is hard to

build because it is multidimensional, because it demands a division of labor, and

because the problems it is trying to solve are inherently hard. One of the earliest and

still best analyses of complex software development projects is Frederick Brooks The

Mythical Man-Month. 1 Brooks Law states one of the fundamental conclusions from

Brooks assessment: "Programming work performed increases with direct proportion to

the number of programmers (N), but the complexity of a project increases by the

square of the number of programmers (N2)." Brooks Law, even if it is not precisely

verifiable, is a powerful statement about the software engineering manifestation of a

repeated observation on this point. It is hard to build complex systems in considerable

measure because it is so hard for people to explain to each other what they are trying to

do. Brooks argument boils down to this simple but profound claim: human communi
cation about complex, often tacit goals and objectives is imperfect. And it gets more

imperfect, and at an increasing rate, as it travels between larger numbers of people. So,

how do we ever get a functioning division of labor at a large scale to do things like

build a New York skyscraper, or write a program with a million lines of code?

One way to manage this dilemma is to enclose the production process within a formal

organization for example, a proprietary software company. The ideal-type principles of

organization here are command and control authority, hierarchical structure for decision

making, and tight governance of principal-agent problems. Sustaining that kind of orga
nization depends on maintaining control over the essential resources in the production

process. In the software world, that means keeping source code secret. The open source

community, by releasing source code, undermines the possibility of setting up the pro
duction system in the same way and energizes a quite different organizational model.

No one should bet on anything like a wholesale transfer of the organizational model(s)
from the open source community to the nonsoftware world; that is too simplistic. What
I think we should focus on instead is the means by which the open source community
processes, collates, upgrades, corrects, distributes, and implements problem-solving

1 Frederick P. Brooks, The Mythical Man-Month: Essays on Software Engineering, 20th
Anniversary

Edition (Addison Wesley, 1995).

The Empirical Problem Set: What Are We Aiming At? , C 363

information. In other words, think of open source as a particular kind of information

processing algorithm. (It then makes sense to treat the related issues of intellectual prop

erty rights and organizational structures that are typically seen as core to the open source

community as instrumental, not foundational.) What is foundational to transfer is the

information processing "system"
that is enacted in this community, and how the results

of that process are incorporated into real solutions to practical problems.

It may seem quixotic to think about complex social problem solving in political commu
nities as an information processing challenge. After all, we know that innovation in this

setting traditionally is slow, constrained, inefficient, and frustrating. And we know, from

the work of Max Weber and Joseph Schumpeter and extending into modem public

choice theory in political science and management theory in business, some of the rea

sons why that is the case, in particular the organizational disincentives and cultural

impediments to change that are inherent parts of bureaucratic culture and institutions. 2

Clearly there are a lot of things going on in political communities besides poor infor

mation processing. But any experiment, even a thought experiment, has to start some

where. The proposition here is that information processing is a significant impediment
to problem solving in some important political situations and that, if we can define a

set of problem domains that fit this description, we can do something interesting by

attacking the nature of the information processing problem first and then thinking

about the organizational structure and political problem secondary to that. In other

words, design the governance institutions in ways that facilitate information paths that

we think will work, rather than the other way around. This is worth experimenting

with in part precisely because it is the reverse of many conventional ways of thinking;

and in part because we know more about the trade-offs associated with governance

institutions than we do about the information processing issues.

In sum: think of the target as a set of problem-solving practices which necessarily

include an information processing algorithm and the associated institutional struc

tures and incentives that make that algorithm function in real-world settings. These

practices will tap into distributed knowledge that in some cases may be present in

geographically dispersed individuals or communities; in some cases may be present

in separate pieces that have not been integrated into a single, useful whole; and in

some cases may be implicit in relatively undefined or tacit practices that
"belong"

to

individuals experiences but are for that very reason not available for use, testing,

and refinement by larger groups. Primary care medicine is a good example. My doc

tor in Berkeley is often solving the same problems of diagnosis and treatment that a

primary care doctor in Manhattan solved yesterday, but she has to re-create com

plex, tacit, and multifaceted knowledge that already exists elsewhere, because there is

no structure within which that knowledge can be effectively shared. The bet you

2 Some classic readings are in Max Weber, Economy and Society (University of California Press,

1978); Essays in Sociology (Routledge & Kegan Paul, 1958); and Joseph Schumpeter, Capitalism,

Soda/ism, and Democracy (Allen and Unwin, 1958).

364 *
*

Patterns of Governance in Open Source

need to make to stay with me in this chapter is simply that an important subset of

social and political problems fits in this category and might be attacked in this way.

The Theoretical Problem: How Is Knowledge Distributed?

Contemporary literature on "communities of
practice"

takes off from a very similar

bet. 3 This literature offers a set of relatively obvious but useful design principles that

appear to contribute to success. None of these principles really is well enough speci

fied to be operational, but they are clearly worth keeping in mind as a checklist

against which any system design can be compared. Roughly, they are:

Design for evolution (allow the community to change).

Open a dialog between inside and outside perspectives (tightly insulated com

munities tend to corrode).

Allow for different and bursty levels of participation (different people will partic

ipate at different levels, and any single person will participate at different levels

over time).

Preserve both public and private community spaces (not all community interac

tions are public; backchannels should be available).

Focus on the value that is created for the people in the community.

Mix the familiar and the new.

Facilitate the creation of a rhythm (pure bursty-ness and unpredictability tend to

corrode commitment).

These design principles actually presuppose quite a lot about the nature of the

knowledge that the community of practice is trying to generate, organize, and share.

I want to parse out some of the assumptions about that knowledge and some of the

different ways it may be embedded in communities to illustrate this point.

Consider again the common saying "none of us is as smart as all of us." The operative

assumption is that each one of us has bits and pieces of
"good" (useful) knowledge and

"bad" (wrong, irrelevant, or mistaken) knowledge about a problem. If Frederick Brooks

was even partially right about the social dynamics of complex reasoning (and I think he

was right), the demonstrated success of the open source process cannot simply depend
on getting more people or even the

"right" people to contribute to a project. It depends,

crucially, on how those people communicate information to each other. Put differ

ently, depending upon how the community selects, recombines, and iteratively moves

information forward over time, the collectivity will become either very smart or very

stupid.

3 See, for example, Etienne Wenger, Communities of Practice: Learning, Meaning, and Identity

(Cambridge University Press, 1999).

The Theoretical Problem: How Is Knowledge Distributed?
"

* 365

I am just saying explicitly here what Eric Raymond implied about the open source pro
cess. It is not simply that "with more eyeballs all bugs become shallow." It depends

directly on how those eyeballs are organized. And since I am treating organization as an

outcome of what kind of information processing algorithm the community needs, to

get to operational design principles means understanding better at least these two

aspects: how knowledge is distributed in the community, and what the error correc

tion mechanisms you can apply to that knowledge. In simpler language, who knows

what, and how do you fix the mistakes?

We know from both intuition and experience that much of what a group needs to

"know" to do something is in fact coded in the experiences, tacit knowledge, implicit

theories, and data that is accessible to individuals. The problem for the group is that

these individuals often don t know how to, aren t incentivized to, or haven t thought
of sharing it with others in a mutually beneficial way. We know also that there is

noise in the signal. At best, the pieces of distributed knowledge that (if they could be

brought together effectively) make up a solution to a problem, are floating around in

a sea of irrelevant or incorrect
"knowledge."

In a changing and uncertain environment, with strategic players who sometimes have

economic incentives to mislead others, and a relatively low tolerance for cascading

failures that hurt human lives, the law of large numbers won t solve this problem for

us. That is a complicated way of saying that we can t afford to wait for evolutionary

selection. Most of evolution is wasted resources. It is extremely inefficient and slow,

destroys enormous amounts of information (and protoplasm), and can t backtrack

effectively. No one wants this for human systems and it s not clear that we should

tolerate it. We need an engineered system.

We also know that this is a very tall hurdle to get over. Large firms commit huge

resources to knowledge management, and with very few exceptions (Xerox s Eureka

project is notable here) these investments underperform. These systems fail in a number

of distinct ways. The most common (and probably the most frustrating) is simply that

nobody uses the system, or not enough people use it to generate sufficient interest. More

troubling is the failure mode in which the
"wrong" people use the system people with

good intentions who happen to have bad information, or people who might be trying to

game the system or intentionally insert bad information to advantage themselves over

others in a manner that is either cynical or strategic, depending on how you look at it.

There are other potential failure modes, but the point is to recognize that there is

no inherent ratchet-up mechanism for knowledge management. The system could

deteriorate over time in several ways. People could share mistakes with each other

and scale them up. People could reuse past experiences which are seen as success

ful in the short term or by particular individuals, but actually are failures overall

from the long-term perspective of the community. You could attract the wrong

36G * * Patterns of Governance in Open Source

"experts"
into your network, or perhaps more likely use experts for the wrong pur

pose. And you could populate a database with garbage and produce multiplying

wastes of effort and cascading failures of behavior. All of us have worked in organi

zations or communities that have suffered from knowledge management failures of

at least one of these types.

But put the community in the background for a moment, and consider the problem

from a microperspective by imagining that you are a person searching for a solution

to a problem within that community. Now, how knowledge is distributed directly

affects the search problem that you face. There are at least three possibilities here.

Case 1 is where you have a question, some other individual has the answer, and the

problem for you is whether you can find that person and whether that person is inter

ested in sharing with you what she knows. Case 2 is where no single person has the

answer to your question; instead, pieces of the answer are known by or embedded in

many people s experiences. The relevant bits of information float in a sea of irrelevant

information; your problem is to separate out the bits of signal from the noise and

recombine them into an answer. Case 3 is a search and discovery problem. Some of the

knowledge that you need is floating around in disaggregated pieces (as in Case 2) but

not all of it; you need to find and combine the pieces of what is known and then syn

thesize answers or add to that new knowledge from outside the community itself.

Here s where your dilemma gets deeper. You don t know to start if you are facing Case

1
, 2, or 3. And it matters for what kind of search algorithm you want the system to pro

vide for you. For example, should you use a snowball method (go to the first node in

the network and ask that node where to go next)? Or some kind of rational analysis

rule? Or a random walk? Or maybe you should just talk to the people you trust.

And now consider the dilemma from the perspective of the person trying to design

the system to help you. She doesn t know if you are an expert or a novice; or how

entrepreneurial or creative you are; or what your tolerance will be for signal-to-noise

ratios; or whether you can more easily tolerate false positives or false negatives.

The history of the open source community as it navigates some of these dilemmas,

some of the time, suggests a big lesson: it s impossible to
"get

it
right"

and it s not sensi

ble to try. What is more sensible is to try to parse the uncertainties more precisely so

that we can design systems to be robust. More ambitiously, to design systems that can

diagnose to some degree and adapt to uncertainties as the system interacts with the

community over time. A second big lesson of open source is the high value of being
both explicit and transparent about the choices embedded in design principles. The

next section incorporates both of these lessons into a set of seven design principles for a

referee function, inspired by patterns of collaboration within open source communi

ties, that just might make sense for a community of knowledge and practice in politics.

The Theoretical Problem: How Is Knowledge Distributed? . * 367

Design Principles for a Referee Function

Voluntarism is an important force in human affairs, and the open source software pro
cess would not work without it. But harnessing the efforts of volunteers is not enough
to build a piece of software or, for that matter, anything else that is even moderately

complex. As I ve said elsewhere, the reason there is almost no collective poetry in the

world is not because it is hard to get people to contribute words. Rather, it is because

the voluntary contributions of words would not work together as a poem. They d just

be a jumble of words, the whole less than the sum of its parts.
4

In my view, this implies that the bulk of social science research that tries to parse the

motivations of open source developers, while interesting, basically aims at the wrong

target. Noneconomic motivations (or at least motivations that are not narrowly defined

by money in a direct sense) are a principal source of lots of human behavior, not a

bizarre puzzle that requires some major theoretical innovation in social science. The

harder and more interesting question is governance. Who organizes the contributions

and according to what principles? Which "patches" get into the codebase and which do

not? What choices are available to the people whose contributions are rejected?

The real puzzles lie in what I ll call the "referee function," the set of rules that govern

how voluntary contributions work together over time.

In other words, what makes the open source process so interesting and important is not

that it taps into voluntarist motivations per se, but rather, that it is evolving referee func

tions that channel those motivations, with considerable success, into a joint product and

that it does so without relying on traditional forms of authority. No referee function is

perfect, and among the variety of open source projects, we can see people experiment

ing with different permutations of rules. I believe I can generalize from that set of experi

ments to suggest seven discrete design issues that any referee system will have to grap

ple with. Certainly this is not a comprehensive list, and the seven principles I suggest are

not sharply exclusive of each other. Each incorporates a tradeoff between different and

sometimes competing values. And I am not proposing at this point where to find the

"sweet
spot"

for any particular community or any particular problem-solving challenge;

my goal is much more modest than that. The point here simply is to lay out more sys

tematically what the relevant tradeoffs are so that experiments can explore the underly

ing issues that might cause groups to move or want to move the "levers" of these seven

principles in one direction or another over time.

Weighting of Contributions

No problem-solving community is homogeneous (in fact, that s why it makes sense for

individuals to combine forces). Not everyone is equally knowledgeable about a particu

lar problem. Different people know different things. And they know them with different

levels of accuracy or confidence. A referee system needs a means for weighting contribu-

4 Steven Weber, The Success of Open Source (Harvard University Press, 2004).

368
*
* Patterns of Governance in Open Source

tions and it should reflect these differences so that when information conflicts with other

information, a more finely grained judgment can be made about how to resolve the con

flict. Mass politics teaches us a great deal about bad ways to weight contributions (for

example, by giving more credence to information coming from someone who is tall, or

rich, or loud). One of the interesting insights from the open source process is the way in

which relatively thin-bandwidth communication such as email lists facilitates

removal of some of the social contextual factors in weighting which are ultimately dys

functional. Tall, handsome men have a significant advantage in televised political

debates, but not on an email list. Collaborative problem solving at a distance probably

leans toward egalitarianism to start. But egalitarianism does not automatically resolve to

meritocracy. The transparency of any algorithm is both desirable and risky desirable

because it makes visible whose contributions carry weight and why; and risky because,

well, for exactly the same reasons.

Evaluating the Contributor Versus Evaluating the Contribution

A piece of information can in principle be evaluated on its own terms, regardless of

its source. But in practice it is often easier to (partially) prequalify information based

on the reputation of the person who contributes the information. Take this to an

extreme trusted people get a free ride and anything they say, goes and you risk

creating a winner-takes-all dynamic that is open to abuse. But ignore it entirely and

you give up a lot of potential efficiency after all, there is almost certainly some rele

vant metadata about the quality of a piece of knowledge in both what we can know
about the contribution and what we can know about the contributor. eBay strongly

substitutes the reputation of the person (seller or buyer) for information about what

is at stake in a particular transaction. I suspect that software patches submitted to

Linux from well-known developers with excellent reputations are scrutinized some
what less closely than patches from unknown contributors, but that s only a hypoth
esis or a hunch at this point. We don t really have a good measure of how large, open
source projects actually deal with this issue, and it would be a very useful thing to

know, if someone could develop a reasonable set of measurements.

Status Quo Versus Change Bias

The notion of a refereed repository, whether it is made up of software code or social

rules or knowledge about how to solve particular problems, is inherently conserva

tive. That is, once a piece of information has passed successfully through the referee

function, it gains status that other information does not have. Yet we know that in

much of human knowledge (individual and collective), the process of learning is in

large part really a process of forgetting in other words, leaving behind what we

thought was correct, getting rid of information that had attained special status at one

time. The design issue here is just how conservative a referee function should be,

how protective of existing knowledge. There are at least two distinct parameters that

bear on that: the nature of the community that produces the knowledge, and the

Design Principles for a Referee Function 369

nature of the environment in which that community is operating. Consider, for

example, a traditional community that is culturally biased toward the status quo, per

haps because of an ingrained respect for authority. This community might benefit

from a referee function that compensates with a bias toward change. If the commu

nity is living in a rapidly shifting environment, the case for a change bias is stronger
still. The parameters could point in the other direction as well. Too much churn in a

repository would rapidly reduce its practical usefulness, particularly in a problem
environment that is relatively stable.

Timing

Separate from the issue of status quo versus change bias is the question of timing. How

urgently should information be tested, refereed, and updated? The clear analogy in

democratic electoral systems is to the question of how frequently to hold elections

which is obviously a separable question from whether incumbents have a significant

electoral advantage. A major design consideration here follows from a sense of just how

"bursty" input and contributions are likely to be. Will people contribute at a fairly regu
lar rate, or will they tend to contribute in short, high-activity bursts followed by longer

periods of quiet? We know from the open source process that contributors want to see

their work incorporated in a timely fashion, but we also know that speeding up the

clock makes increasing demands on the referee. This is probably one of the most diffi

cult design tradeoffs because it is so closely tied to levels of human effort. And it s made

harder by the possibility that there may be elements of reflexivity in it that is, a more

rapidly evolving system may elicit more frequent input, and vice versa.

Granularity of Knowledge

Modular design is a central part of open source software engineering. The question is

where to draw the boundaries around a module. And that is almost certainly a more

complicated question for social knowledge systems than it is for engineered soft

ware. No referee function can possibly be effective and efficient against many differ

ent configurations of claims of knowing things. And there is likely to be a significant

tradeoff between the generality of information, the utility of information, and the

ease and precision of evaluation. Put differently, rather general knowledge is often

more difficult to evaluate precisely because it makes broader claims about a prob

lem, but it is also extremely useful across a range of issues and for many people if it is

in fact valid. Highly granular and specific knowledge is often easier to evaluate, but it

is often less immediately useful to as many people in as many different settings pre

cisely because it is specific and bounded in its applicability.

System Failure Mode

All systems, technical and political, will fail and should be expected to fail. In the early

stages of design and experimental implementation, failures are likely to be frequent. At

least some failures and probably most will present with a confusing mix of technical and

370 ^ C Patterns of Governance in Open Source

social elements. How failures present themselves, to whom, and what the respective

roles of systems designers, community members, and outsiders are at that moment, are

critical design challenges. In Exit, Voice, and Loyalty, Albert Hirschman distinguished

three categories of response to failure you can leave for another community (exit), you

can stick with it and remain loyal, or you can put in effort to reform the system (voice).

One of the most striking features of the Linux experience is that this community, by

empowering exit and more or less deriding loyalty, has had the effect of promoting the

use of voice. It is precisely the outcome we want a system that fails transparently in

ways that incentivize voice rather than exit (which is often extremely costly in political

systems) or loyalty (which is not a learning mode).

Security

How to design and implement security functions within a referee system depends

sensitively on the assumptions we make about what the system needs to guard

against. In other words, what level and style of opportunism or guile on the part of

potential attackers or
"gamers"

do we believe we ought to plan for. This is simply a

way of saying that no system can be made secure against all potential challenges.

Security is always a tradeoff against other considerations, in particular ease of use,

privacy, and openness. And security likely becomes a greater consideration as the

value that the system provides rises over time. Hackers and crackers whether

benign or malicious in their intentions are an important part of software ecologies

precisely because they test the boundaries of security and force recognition of weak

nesses. Can political communities be designed to tolerate (and benefit from) this

kind of stress testing on a regular basis?

What Should We Do Differently?

Political ideas, like democratic experimentalism and distributed community problem

solving, share some central characteristics with the open source software process.
5 In

my view, the most interesting intersections lie in the configuration of referee func

tions how any system decides that some "code" is better than others and should be

incorporated into an interim package, how long it should stay there, how it can be

removed or modified and by whom, how it ought to be configured to interface with

other code, and what happens when the system breaks down. These are constitu

tional questions in a profound sense, in that they reflect on the constitutive elements

that make up a community (even if they are not legally enshrined in something that

people call a constitution).

Open source communities are tackling all of these problems, with varying degrees of

self-consciousness. The patterns and practices of collaboration within open source

communities are evolving rapidly, and that provides interesting experimental insights

5 See, for example, M.C. Dorf and Charles Sabel, "A Constitution of Democratic

Experimentalism" (Columbia Law Review, 1998).

What Should We Do Differently? X 371

that can travel outside the software and technology worlds. The seven design princi

ples I laid out earlier are not optimization functions. They are explications of trade

offs; understanding them is a prerequisite to smart experimentation. So, the first

thing we should do differently, or more than we do at present, is to instrument some

of these experiments and tighten up the feedback loops so that we learn more

quickly and more precisely about what happens when you slide the levers of these

seven design principles into different configurations.

The second thing we can do differently is to get precise and transparent about the

overall goal of communities of knowledge and practice in politics. Open source com
munities provide a very good template for a broad statement of goals. I propose that

when designing a system, you ensure the following:

The system has effective individual incentives, organizational structures, and

information technology tools. . .

To pull together distributed knowledge within communities that are trying to

solve practical problems. . .

By combining pieces of knowledge into something useful in a manner that. . .

Ensures that error correction exceeds the rate of error introduction as the system

"learns," while...

Maintaining the process over time in a sustainable, nonexploitable, and expand
able way.

The challenge and opportunity here are highly general across political communities.

And they are going to get more important in the future, particularly as the economics

and demographics of advanced industrial countries continue to drive many of the social

welfare functions that have for some time been provided by the public sector, out of that

sector. Some of these functions, of course, get moved into the private sector. And social

scientists have learned a great deal in the last 20 years about the upsides and downsides

of what is commonly called
"privatization."

We argue around the margins about how to

engineer the transition and we argue about the overall efficacy and desirability of the

outcomes, but at a high level we do understand a fair amount about sensible gover

nance principles and the tradeoffs they engender in the private sector setting.

We know much less about how to set up systems for moving some welfare provision

functions into the civil society space, which is neither public sector nor private sec

tor per se. Open source-style collaboration is, in a real sense, a form of technologi

cally enabled civil society. And so the third thing we can do differently is to mine the

experience of open source for lessons about how to create pragmatic, workable alter

natives to privatization that can be implemented and can evolve within a developing

civil society space.

372 ^
*

Patterns of Governance in Open Source

XX

Communicating Many to Many

Typical users in the Windows community and typical users in the Linux/open source

community have different tendencies. For real-time communications, Windows users

tend to prefer an Instant Messaging (IM) client like AOL Instant Messenger (AIM) and

Linux users tend to prefer an Internet Relay Chat (IRC) client like XChat. On the surface,

these clients and protocols differ little: both support channel or chat room messaging,

both support one-on-one messaging, and both allow for some degree of moderated dis

cussion. Yet IM users tend to communicate one-on-one by default, resorting to chat room

discussions only for specific purposes and even then rarely, and IRC users tend to com
municate in group channels, resorting to one-on-one communication only occasionally.

That tendency toward group activity underlies much of the collaborative instinct in

the open source community, and ultimately provides a key to open source s remark

able success. Yet any IRC veteran knows well the scaling problems group communi
cation encounters. A channel with a dozen or so participants, a handful of whom are

vocal, can be a very productive center of communication. A channel with 20 to 50

participants suffers a crippling signal-to-noise ratio, absent some form of modera
tion: too much noise, not enough signal.

This pattern is reflected in all forms of online group communication: discussion forums,

email lists, and Usenet from the very early days. Breaking this pattern stands as one of

the chief challenges to effective collaboration. How can communicating many to many
scale? What conditions enable network effects to take hold so that more participants

improves rather than diminishes the quality of communication, and hence the power of

collaboration?

Slashdot stands as a striking counterexample to the usual pattern. Over the years, the

site has evolved into a high-quality, moderated discussion forum, one where the more

people participate, the more valuable the discussion is. Network effects have taken

hold; many-to-many communication is enabling a unique form of collaboration.

The Origins of Slashdot

Like many web endeavors that evolved into dot-corns, Slashdot started as a hobby and

a learning exercise. Rob Malda, Jeff Bates, Nate Oostendorp, and Kurt DeMaagd the

future "Blockstackers" had been friends growing up in Holland, Michigan, and later

at Hope College. At first, "online community" meant bulletin board systems (BBSs):

email, discussion, and file sharing services available locally by dialing up and connect

ing directly to a BBS machine. College provided access to the Internet and the earliest

web sites via one of the college s Unix or VAX machines.

Rob Malda s first home page at college (http://cs.hope.edu/~malda), dubbed
"Chips

and

Dips,"
would be labeled by mainstream media today as a weblog, or blog. Superfi

cially, Chips and Dips did resemble current blogs minus many of the interactive ele

ments we take for granted in today s Internet. It was a personal page for Rob. It

offered his opinions on everything from web design to science fiction book reviews.

Yet to call it an early blog really misses the point.

Blogs are fundamentally inward facing. They share events from the blogger s life,

together with opinions of the blogger on those events and the world at large. Chips

and Dips had none of that intimate and voyeuristic sense of a diary. Instead, it had

more in common with the early versions of Yahoo!: a hand-built directory of useful

links, with guidance and commentary, aimed at like-minded people. Chips and Dips

was, from the beginning, about that sense of community; it was outward facing.

Indeed, right from the start Chips and Dips offered more than just Rob s links and

opinions. Friends submitted suggested entries for the directory listings, or reviews of

movies that others had yet to see. The site was just flat HTML, no CGI or other

dynamic elements. As a consequence, the only way to submit to the site or contrib

ute to discussion was to email Rob, and then wait for Rob to post on the site. This

created an implicit and autocratic moderation mechanism. If Rob did not have the

374 ^ C Communicating Many to Many

time or interest to post something, it didn t get posted. As it was Rob s site, his deci

sion, or even whim, was final.

In the fall semester of 1997, Rob Malda, Jeff Bates, and the other Blockstackers entered

their junior year of college. Most had two years of computer science under their belts,

and lots of hands-on experience from hobbies pursued and an assortment of student

jobs. They also had a sense of the larger world of which Hope College was a part.

Netscape had completed its successful IPO. Graphical web browsers, and the Web

itself, were becoming pervasive parts of popular culture. Microsoft had released Win

dows 95 and announced that the Internet was the future of the company. Linux was

headed toward the 2.0 release of the kernel. Apache was, as it is today, running most

public web sites. The dot-corn boom was in full swing.

Registering a domain name had gone from an esoteric to a more commonplace activ

ity, albeit an expensive one by student standards. While Rob had done a lot of com

puter programming, he was fundamentally a designer, and indeed one with a strong

sense of the ironic. He approached problems visually, and in his spare time was as

likely to be doodling cartoons as writing code.

The choice of the name "Slashdot" for a domain was a clever play on the line between

the visual and the verbal. In the early web days, the idea of a URL and what it was still

seemed alien to the mass media. Every ad for a web site began with the announcer

carefully spelling out, "H-T-T-P colon slash slash..." Visually, "/" is simple and distinc

tive. In those days, verbally spelling out "H-T-T-P colon slash slash....dot
org"

was

ridiculous. It appealed to Rob s sense of humor.

Moving from Chips and Dips to Slashdot brought several immediate changes, not all

of them forseen.

Slashdot in the Early Days

From fall of 1997 to spring of 1998, Rob Malda and the other Blockstackers went

through a rapid education on emerging web technologies. Chips and Dips had been

entirely static HTML. By spring of 1998, Slashdot had dynamic content through CGI,

and then very quickly, given the performance limitations of CGI, dynamic content

Slashdot in the Early Days 375

via Apache modules, specifically mod_perl. The quality of HTML improved, coming
much closer to standards compliant.

The purpose at this stage was a learning exercise as much as anything else. New features

of HTML or Perl were learned during "day jobs"
at work, and then what was learned

was applied to Slashdot. By the spring of 1998, this process had begun to reverse itself.

New ideas were tested on Slashdot, often proving valuable at day jobs as well.

One of the important changes during this time was the creation of submit.pl, the Slash-

dot submissions bin. Making submissions an inherent part of the site rather than some

thing that had to pass through the Inbox of Rob s email made the submissions process

scalable, and also enabled others besides Rob to take a direct hand in the editorial pro
cess of reviewing submissions and approving them for posting to the site.

Another key technical change during this time was the move from a web site that was

merely under an account on a university server to a standalone server running Slash-

dot. The hardware was a single DEC Multia that Rob had received as barter payment
for drawing cartoons for a self-published business book. The server was hosted at

Rob and Jeffs place of employment. Their employers needed an email server, and

Rob suggested that they could use that box as an email server, as long as he could do

some other hosting on the box as well. Initially this arrangement worked well,

though the server was subject to sudden power outages and downtime if you weren t

careful to avoid the power cord when putting you feet under Rob s desk. Of course,

it was a server running Linux.

While Rob s interest in Linux dates back to Chips and Dips, running Slashdot and

the technology behind it really increased that interest. Naturally, content on the site

itself served this need, as Rob began to accumulate, and visitors continued to send in,

an impressive list of Linux resources online.

This dynamic of needing Linux to run the site and using the site to learn about Linux

created an unanticipated side effect, compounded by other changes happening at the

same time. Chips and Dips, while it was Rob s personal home page, had always been

a community site. Indeed, this community focus is one of the key differentiators

between Chips and Dips and what today we would call a blog. However, that initial

community consisted primarily of other geeks in and around Holland, Michigan, and

specifically, others at Hope College (though even early on the larger Linux commu

nity had interest in some of Rob s graphics work).

A university home page and a top-level domain like
"Slashdot.org" are, in some

sense, equally public. Both could be accessed from any browser connected to the

Web anywhere in the world. But Slashdot felt like a more prominent site than Chips
and Dips, and was more likely to be bookmarked by others, or added to directories,

which, at the time, were still largely compiled by hand. This alone drew a larger,

more global audience to Slashdot.

376 ^ C Communicating Many to Many

In addition, in early 1998, there simply weren t that many thorough Linux resources

online. As one of these few, Slashdot stood out to Linux enthusiasts everywhere, not

just at Hope College. The site was still a community site. But somewhere along the

way in winter of 1997-1998, the community had become global. This was still a

community of like-minded peers; it was, as Slashdot has proclaimed from the early

days, "News for Nerds." But it was becoming a much larger community. During this

period, Slashdot passed 20,000 page views per day, a level of traffic that, especially

circa 1998, signified a sizable, loyal audience beyond the confines of Holland, Michi

gan. By way of comparison, Holland has a population of a little over 30,000.

Some years later, then-Slashdot columnist Jon Katz speculated about why this impor

tant resource for the technically inclined had happened in rural Michigan rather than

in a flourishing center of technology like Silicon Valley. Katz felt that it was a com

munity born of necessity. In Silicon Valley, technical communities abounded, and

face-to-face opportunities to meet and interact with like-minded peers were plenti

ful. Only in a more isolated place like Holland, Michigan, would it be necessary to

actively pursue a community online to find the critical mass needed to form a genu

ine community of interest.

A community of like-minded peers is one thing. The arrival of the masses is quite

another. The Slashdot community was about to change dramatically, starting with

what seemed like a small incident.

The Slashdot Effect

On January 12, 1998, Rob Malda posted a piece on Slashdot titled
"Simple

Solu

tions" that he had written, and that he described as "the first of hopefully many

Slashdot.org Editorials" (see Appendix D). In this editorial, he challenged Netscape

to open source its browser code as the best available alternative for a company losing

both money and market share. On January 22, Netscape put out a press release with

the headline "Netscape Announces Plans to Make Next-Generation Communicator

Source Code Available Free on the Net." The release of Mozilla marks one of the sig

nature events in open source development.

It s important to understand what did not happen. No one at either Slashdot or

Netscape has ever claimed that Rob Malda s essay had any direct effect on Netscape s

decision. Indeed, the complexity of the process and the proximity of the dates sug

gest that Netscape s decision must have been made well in advance of Rob s edito

rial. But the proximity of the two events and a general lack of understanding about

open source at the time caused mainstream technology media to link the two.

Slashdot had been discovered by mass technology media.

Several changes began to take hold on Slashdot, and indeed, the effects of those

changes are still playing out today. The mainstream technology media took a regular

interest in Slashdot, and the mere fact that a story was covered on Slashdot became

significant. Ironically, Slashdot seldom has been the originator of a news story, so

this interest in Slashdot coverage was largely about watching what other people were

watching, an obsession that seems to be a distinctive part of the Internet generation.

A peculiar side effect of this "watching the watchers" was that Slashdot became a

source of journalistic research. Smart journalists looked for insightful comments,

finding stories and ideas in those comments and their authors. Indeed, because

Slashdot has always permitted anonymous posting, comments often had the insider s

candor that journalists value.

An extension of this media interest was the involvement of media figures in Slashdot.

Author Jon Katz was working at HotWired at the time, while also researching his book,

Geeks. He contacted Rob and Jeff first as part of his research for the book, but more and

more because of his genuine interest in Slashdot and the community for which it stood.

The result was that Katz became a regular columnist on Slashdot for several years.

The reaction to Katz s presence was revealing. Many were impressed with his writ

ings and insights into geek culture, and would quietly send their notes of apprecia

tion to Rob, Jeff, or Jon privately. At the same time, a vocal minority of the audience

objected strongly to Katz as an outsider, and posted their views bluntly as comments

to any column he posted. When user accounts and customizations arrived on Slash-

dot, "filter out Jon Katz" was, for a time, the most frequently selected customization.

This response was, of course, out of all proportion to anything Katz said or did. Katz

is a professional writer, a serious journalist, and had a genuine interest in the geek

community. However, he became a symbol of the new crowd that had arrived at

Slashdot, readers who were more interested in geek culture than geek technology.

Katz became a lightening rod for all the resentment felt by the original core audi

ence, some of whom felt the need to lash out at these "invaders."

Slashdot was reaching traffic levels that signified a vastly larger audience than the origi

nal Linux and open source enthusiasts and other geeks. On February 9, 1998, the site

received its 1 millionth hit. Barely a month later, on March 18, it received its 2 millionth

hit. Just a month after that, the site recorded more than 100,000 page views per day.

378
* *

Communicating Many to Many

Yet if Slashdot was changing, it was also changing other sites as well. The appear

ance of a particularly noteworthy story at the top of Slashdot s home page would

generate a flurry of discussion. Few stories posted left the front page with fewer than

200 comments, and many stories received in excess of 700 comments. Further,

much of the Slashdot audience would descend, simultaneously and en masse, on the

site from which the story originated. Many sites were unable to handle this sudden

influx of new traffic, and would simply crash under the load.

This sequence of events the posting of a story, the rush of traffic to the story s site,

and the strain or failure of the site under the load has become so notorious that it is

now known as "the Slashdot Effect." Indeed the network characteristics of the Slash-

dot Effect have been worthy of academic study. Stephen Adler at Brookhaven

National Laboratory had the first real study of the Slashdot Effect, available online at

http://ssadler.phy.bnl.gov/adler/SDE/SlashDotEffect.html.

The term Slashdot Effect has entered popular culture; it has an entry in the Oxford

English Dictionary s online edition, and Slashdot serves as the answer to a question

in the 90s edition of Trivial Pursuit.

Trolls, Anonymous Cowards, and Insensitive Clods

Spring

99

Many discussion forums, be they mailing lists, web-based discussions, or IRC chan

nels, produce high-quality discussions among a few participants. The challenge is to

scale this "few-to-few" communication all the way to
"many to

many." Adding a

moderator helps to a point. Many moderated discussions, though, improve the
"sig

nal-to-noise ratio" at a cost: over time, the signal takes on more and more of the

moderator s particular viewpoint. Other viewpoints, intentionally or not, are stifled

with a hostile reaction. Rarely can a discussion forum have enough commonality in

interest to draw a critical mass of audience, have enough variety in viewpoints to

keep the discussion interesting, and scale to ever-larger audience sizes without los

ing the signal of the discussion in the noise of the chatter.

Discussion systems can avoid the tyranny of a single moderator by letting all users

vote on moderation. However, letting every user vote equally on moderation assumes

that all users are equally informed, equally concerned, and equally motivated about

Trolls, Anonymous Cowards, and Insensitive Clods
*

373

what they are moderating. These are unrealistic assumptions that lead to a tyranny of

the masses as damning as the tyranny of a single moderator.

In the spring and summer of 1998, Slashdot faced all these challenges. What

emerged was a mix of software engineering and social engineering to cope with the

growth of the site. Not everything that was tried worked, and some solutions are still

works in progress.

User accounts were created. Registered users could customize which slashboxes (sets

of links to changing external content; a precursor to today s RSS) appeared on their

Slashdot page, and where. Today we would call this portalizing the site. To the Slash-

dot team it was a way of minimizing complaints and encouraging visitors to register

and log in. Users could filter content to see only stories on certain topics, or to

exclude stories on certain topics. Having a low user account number also became a

point of pride with the regular visitors.

An interesting and intended side effect of user accounts was to reduce the number

of off-topic or deliberately inflammatory comments. People are, by nature, less

inhibited when communicating anonymously. The simple step of encouraging peo

ple to identify themselves helped restore some order to discussions.

An issue continuously debated behind the scenes was whether anonymous posting

should be allowed at all. In the end, free-speech considerations have trumped all

other considerations in this debate. Anonymous posting allows an employee to speak

out candidly about his employer without fear of retribution. Anonymous posting

allows someone to express an opinion or political view without being chastised by

their peers. Ultimately, anonymous posting contributed significantly to key events

that have left an indelible mark on Slashdot.

One step that also occurred was the slowly diminishing value of anonymous com

ments over time, their base score became set to 0, which was lower than the 1

threshold that the non-logged-in user reads at by default. This means that most of

the people only read anonymous posts that have been moderated up.

As the audience grew, so did the number of submissions. It became impractical to get

every worthy submission posted to the front page; stories simply would have scrolled

by too fast. In May of 1998, sections were added to Slashdot, creating a separate

front page for those interested in a specific topic. Today there are 14 sections on

Slashdot, ranging from Book Reviews, to Science, to Politics.

The most controversial modification to Slashdot came in October 1998, with the intro

duction of moderation. Each comment is classified on two dimensions: one for the type

of comment, and the other for the quality of the comment. Types of comments include:

Overated, Underated, Troll, Insightful, Informative, Redundant, Offtopic, and Flame-

bait. Quality is numeric, from -1 to 5. All comments initially started at mod level 1, but

could be moderated up or down for as long as the discussion on that story was open.

380 ^ C Communicating Many to Many

One of the important settings available to registered users is the moderation level. Users

can select what level of comments they see by default, and can change that setting on a

story-by-story basis. Thus, if the number of comments at a certain level is too many to

read through, or the relevance drops off too much, users can filter out comments below

a certain level. The default moderation level also enables a form of filtering without

censoring. The most irrelevant or inflammatory comments routinely get moderated

down to a level of or -1. An unregistered user visiting the site has his default modera

tion level set to 1. Since 95% of all visitors to the site never change their moderation

level, the vast majority of visitors never see the lowest moderated comments. Modera

tion also provided an additional motivation to get users to register. After a time, the

policy was changed so that an anonymous user s posts generally started with a modera

tion level of 0, but a regsitered user s comments started with a moderation level of 1.

Many discussion forums have tried various forms of moderation. The challenge is to

find a system that is scalable Slashdot routinely generates tens of thousands of com

ments per day and heterogeneous, namely reflecting more than a single point of

view about how comments should be moderated.

Slashdot met these challenges by borrowing from the principles of collaboration in

its open source roots. The audience is essentially self-moderating, and indeed the

more people participate in the system, the better the moderation gets. This is the

enormous differentiator for Slashdot. Where most discussion forums crumble under

a deteriorating signal-to-noise ratio as their size increases, Slashdot actually benefits

from network effects: more is better.

The key is that Slashdot tracks a wide range of information about its users: how

many comments a user has posted, how many stories a user has submitted, how

many submissions have been accepted, what moderation level a user s comments

tend to settle on, what type of comments a user typically makes. All of this data is

combined to produce a number that roughly quantifies the value of a user to the site.

This number is referred to in the Slashdot system as karma.

Users with high karma are periodically selected to moderate. The system is auto

mated, requiring little intervention from the Slashdot staff. Once selected, a user has

his moderation authority turned on for a period of time, enabling him to moderate

up or down, or classify comments he reads. After a period of time, moderation is

turned off, and passes to another user. At any given time there are roughly 1,850

users moderating comments. 1

If one thinks of the task of a moderator as similar to that of a copyeditor, it is possible to put an

approximate monetary value on the work performed by users while moderating. If the typical
moderator spends even an hour a day on moderation and many spend much longer this

amounts to roughly $50,000 worth of work being done for the site for free each day. The key,

though, is to see it in terms of value provided rather than money saved. Thanks to Slashdot s

tiered moderation system, the site continues to scale and discussion continues to be valuable.

There simple isn t anything one could spend $50,000 a day on to provide comparable value.

Trolls, Anonymous Cowards, and Insensitive Clods X 381

Originally, a user s karma number was viewable. This policy led to problems. Users

viewed their karma rating as a score, and raising their karma as a game. Once people
tried to deliberately game the system, the whole system no longer functioned as well.

The Slashdot staff was also inundated with email complaints about karma for

instance, "My
latest comment was modded up to 5 but my karma went down; I think

your system is broken." Of course, in this context, karma is just a technical term for the

sum of a formula used in the Slashdot system; as such, it could not possibly be "bro

ken." Furthermore, the code for Slashdot has always been available as open source,

meaning that those who really wanted to understand their karma rating could have

done so. Human nature being what it is, however, people quickly slipped into think

ing that there was some real thing to which karma corresponded and which the system
was trying to approximate. In the end, the only workable solution has been to keep
karma ratings private and give users only a vague approximation of their karma ratings.

Slashdot also evolved to have a number of "social
engineering" elements that did as

much to channel users behavior as any of the technical features. Some of these social

engineering elements are blatant, like referring to not logged-in posters as
"anony

mous cowards." Similarly, wildly off-topic or deliberately inflammatory posters are

referred to as "trolls."
2

Some of these elements are subtler. Watch a first-time visitor try to find the "submit"

link, for example. Visitors aren t actively encouraged to submit; you have to really

want to get your submission in. Creating that barrier to entry means that the overall

submission is of higher quality. Because some effort is required to learn how to sub

mit, people who put some thought into their submissions are more likely to submit.

The site also has a distinct personality, one that does not take itself too seriously.

This is apparent from the self-deprecating tag line ("News for nerds; stuff that mat

ters") to the obvious humor in many of the weekly polls. Staff on the site are referred

to by their nicknames, usually originating as nicks on an IRC network or handles on

a BBS. These nicknames have deliberate cultural references meant to be understood

by an audience with the right cultural background. "Cowboy Neal" derives from a

character in Kerouac. "CmdrTaco" is a reference to a Dave Barry column. If you
haven t watched "The Simpsons" or "South Park" regularly, much of the humor on

Slashdot will pass you by.

In its own way, this too is part of the social engineering. The site personality and the

cultural references are a subtle test for like-mindedness with the audience, a way of

encouraging participation from those who
"get

it" and distancing those who don t.

The term troll does not originate with Slashdot, but in fact dates back to the early Usenet
discussion forums on the Internet. Presumably it s a reference to the children s story "The Three

Billy Goats Gruff," in which a troll lurks under the bridge waiting to ambush hapless passers by.

382 ^ C Communicating Many to Many

Slashdot grew up a lot as a site in the summer of 1998. That spring the site began

running banner advertising as a means of generating revenue. Banner sales were orig

inally outsourced to a third party, but out of frustration with the ad sales company s

inability to manage sales or understand the Slashdot audience (who still vociferously

complain at the use of Flash animations in ads), advertising sales were brought back

in-house in July of 1998 and were managed by Jeff Bates.

With little fanfare, Rob Malda quit his job in August 1998 and became Slashdot s first

full-time employee. While other staff continued to work on a part-time or volunteer basis,

this was a significant milestone. Less than a year after the registration of the Slashdot

domain name, the Blockstackers had gone from running a web site to running a business.

Columbine

1,600,000

1,400,000

1,200,000

1,000,000

800,000

600,000

400,000

200,000

Thu Fri Sat Sun Mon Tue

Slashdot has moved away from its technology roots only gradually, and only where a

new topic clearly connects to its core audience. There is a "Book Review" section, but

its focus is on computer books. Sections like "Your Rights Online" branch farther

afield, but are still rooted in topics of concern to the technically inclined: the SCO

lawsuit, the legality of file sharing and peer-to-peer networks, or the status of the

Digital Millenium Copyright Act (DMCA).

Slashdot has never tried to be a general news site, and events of general interest typi

cally are not covered. In this regard, what arrives in the Slashdot submission bin and

what is published to the front page differ substantially.

On Wednesday, April 21, 1999, a number of Slashdot readers submitted reports of a

shooting at Columbine High School in Littleton, Colorado. Ultimately, it would emerge

that fifteen people died, including the two teenage boys who were the shooters.

Twenty-three other people were injured before the two boys ended the massacre by

committing suicide. These details were far from clear as the first submissions arrived at

Slashdot that Wednesday.

A breaking story like Columbine brings out the best and worst in Internet news

reporting. The Internet has an unprecedented capacity to cover events in real time,

and to draw from a widely distributed network of sources. At the same time, stan

dards for journalism and fact checking are largely undefined in this new medium.

Columbine * 383

Rumor is reported as fact, and the distributed nature of information flow makes cor

rection in light of new information difficult.

When the Slashdot staff looked at the submissions regarding Columbine that Wednes

day, it seemed clear that first of all, the story did not tie directly to the technology topics

that are the core of Slashdot s coverage, and second, that the story was still an emerging
one with important facts still unknown. Without much discussion, the staff decided not

to post the story, and leave coverage of Columbine to the mainstream media.

Columnist Jon Katz, however, saw a different story emerging over the next two days.

Katz had been hard at work on his book Geeks, and indeed it was this research into

geek culture that had drawn him to Slashdot in the first place. An important part of

that research concerned the isolation and alienation felt by geek teenagers simply

because they were smart and different. Katz was appalled by the quick move of main

stream media to stereotype the Columbine shooters as a deranged byproduct of a

violence-desensitizing subculture of hard rock, computers, and video games.

On Friday, April 23, Katz used his column on Slashdot to voice a response. He pub
lished a piece titled

"Why
Kids Kill." Katz s main point was to counter the stereo

type. He argued that youth violence was dramatically on the decline, and that there

was no research to establish a correlation between violence in movies, music, games,

or television and violent behavior among youth. He also raised the question of why
our expectations of who violent youth would be urban, disadvantaged, and eth

nic do not match the reality of who violent youth actually are suburban, middle

class, and white. The suggestion, though subtly stated by Katz, was that stereotypes

provided a convenient alternative to confronting the fact that today s parents do not

understand today s youth. If technology was responsible for anything, it was for wid

ening that gap in understanding.

What followed was unprecedented in the history of Slashdot. Most Slashdot readers

view the site and comment from somewhere other than a home computer. Either they

are at work, or they are students using a university computer. Consequently, traffic on

the site, and number of comments, tend to decline on the weekend, with a big drop-off

starting on Friday. Katz s column was posted at 11:00 A.M. on Friday. It received over

1,000 comments (see http://slashdot.org/article.pl?sid=99/04/22/2136230& mode=thread).

The comments included some from parents, teachers, and other adults. But the vast

majority of comments were from teenagers. They spoke out not to defend the shootings

at Columbine, but to express their own feelings of alienation. Much of this alienation

was rooted in the struggle to grow up in a world of rapid, technology-driven change to

which the adults in their life could not relate. The comments are heartfelt, surprisingly

articulate, and seemingly countless (footnote: the "countless" part is, in some sense, true.

Slashdot does not archive comments moderated below zero, so while we know that

more than 1 ,000 comments moderated zero and higher, there is no record of the total

number of comments posted).

384 ** Communicating Many to Many

It s worth quoting a representative example:

When I was growing up, I wore a lot of black, I studied explosives and bomb-

making, I learned how to shoot, and I memorized complete copies of Jane s

Infantry Weapons_ and various army and special forces survival manuals. It was

a funky hobby that never really went anywhere. I ve worn a black trenchcoat

almost every day for ten years, I ve played DOOM-like games since they first

appeared, and I m a big fan of John Woo films. To the best of my knowledge, I

never went nuts and killed anyone.

I also graduated at the top of my high school class and graduated with honors

from an ivy-league college, and I m now happily married and managing the sup

port team for a successful tech startup. I give credit for all of my success to my

parents, who took an active interest in what I was doing and why, without try

ing to control my life.

Katz and the others at Slashdot were stunned. While the site didn t crash, the vol

ume of comments put the site under an unprecedented load. Katz s personal email

was flooded with messages from young people contacting him directly to tell their

own stories of alienation and ostracism. Everyone at Slashdot realized that they had

tapped into a deep sentiment in urgent need of expression.

On Monday, Katz posted a new column, "Voices from the Hellmouth" (see http://

slashdot.org/articks/99/04/25/1438249.shtml). Katz could have tried to assert himself

and lead the discussion at this point. He chose not to. Instead, he recognized a still-

pent-up need for the discussion to continue, and recognized that the most useful

thing he could do was facilitate, rather than lead the discussion. His Monday col

umn contained very little of his own words or opinion, and was instead his attempt

to relay the most insightful or poignant stories he had received. More than 1,200

comments were posted in response to "Voices from the Hellmouth."3

Monday s comments continued the themes of Friday. Young people expressed how

frustrated they were that parents and teachers disapproved of their interests, their

community, and their culture simply because it was something adults did not under

stand. Young people expressed how isolated they felt when teased and persecuted by
their peers for dressing different, acting different, and worst of all, being smart.

On Tuesday, sensing that the discussion had not yet run its course, Katz posted

another column, titled "More Stories from the Hellmouth" (see http://slashdot.org/

features/99/04/27/0310247. shtml). More than 500 comments were posted in response.

It s interesting to note an update that Rob Malda inserted into the story late in the

day (around 7:45 that evening): "Sharon Isaak from Dateline NBC wants to get in

3 The name Hellmouth derives from the television series
"Buffy

the Vampire Slayer."
The series is

set in the fictional town of Sunnydale, mainly at Sunnydale High, which sits atop a nexus of

power drawing everything evil toward it; this nexus is known as the Hellmouth.

Columbine X 385

touch with folks to do a story on this subject for this show. She s specifically seeking

Jay of the Southeast, Anika78 of suburban Chicago, ZBird of New Jersey, Dan in

Boise, Idaho, but she d also like anyone who s been targeted as a result of this thing

to contact her. Wonder if they make ya wear pancake makeup..."

The Columbine story was now a week old.

Two facts about Slashdot are easy to overlook in the course of more-routine day-to-day

content that appears on the site. First, Slashdot is a discussion site, not a news site.

Breaking stories are seldom reported on Slashdot, and while a great deal of news cover

age is presented on the site, fundamentally the purpose of the news is to seed discus

sion. Second, the audience of Slashdot is not so much an audience as it is a community.

Before Columbine, even Slashdot s regulars may not have realized the extent to

which they were a community. Rob Malda and the other Blockstackers had elevated

themselves from an isolated community of geeks in Holland, Michigan, to a global

community of like-minded peers. The "Hellmouth" series on Slashdot affirmed that it

was not just the staff of the site that could make this transformation, but the audi

ence as well. Over the course of that post-Columbine week, teenage geeks became

the voice of Slashdot, speaking many to many. They recognized and celebrated that

they were not alone, but were part of a larger community. The site, like Katz, receded

into the background, and communication was direct between those who came to the

site and posted. Nor was the discussion that week merely a collective pat on the

back. Practical, meaningful advice was asked for, offered, and shared: crisis centers to

contact, teachers to recommend who had been particularly understanding, programs
and opportunities that catered to the aspiring geek.

That practical dynamic is an essential ingredient of community, and had been a char

acteristic of Slashdot for some time. Those who think of the site merely as a news site

have overlooked a small but important section of the site called "Ask Slashdot."

Debuting in May of 1998, this category of posts was not affiliated with any seeding

news story, but instead was a direct plea for advice from the community.

At times the "Ask Slashdot" posts have looked suspiciously like questions that Rob or

other staff members would like to have answered: how to set up a local wireless net

work, or wire a home theater system. This is part of the meaning of like-minded

peers, however; questions of interest to one member of the community are usually of

interest to many others as well.

Over the years, the archives of "Ask Slashdot" have grown to an impressive resposi-

tory of advice and how-to information for those immersed in the geek lifestyle. More

than any other section, "Ask Slashdot" exemplifies the community aspect of the site,

with the audience speaking directly to each other, unfettered by any lead-in story.

The week following Columbine exemplified the finest characteristics of that commu

nity spirit.

38G,C Communicating Many to Many

Slashdot Grows Up

1,600,000

1,400,000

1,200,000

1,000,000

800,000

600,000

400,000

200,000
I 1

I I I I I

Summer Winter Summer Winter Summer
99 99-00 00 00-01 01

If the Netscape story had introduced Slashdot to mainstream technical media, Col

umbine introduced Slashdot to the mass media. The site s audience grew, and diver

sified. The attention focused on the site grew as well. With Columbine, the media

recognized that Slashdot could be, on occasion, not just a discussion point for news,

but the news story itself.

Comments on Slashdot have become increasingly sophisticated. View Slashdot com

ments at moderation level 5 and you see a number of lengthy and thoughtful commen

taries on each story. You also see certain usernames recur as authors of particularly

insightful comments. That combination of an easy online vehicle for expressing opinion

and building reputation through regular posting of well-considered opinions has made

Slashdot a precursor for the Hogging movement of today.

Story submissions have also become more sophisticated. In the first couple of years,

Slashdot accepted many submissions that were simply a link to an interesting bit of

technology news and a brief description of the news item. Accepted submissions now

typically have a main story link, one or more background links to other related sto

ries, as well as links to past Slashdot discussions on the same topic, all contained

within a paragraph or more of explanation. This richer form of submission is a result

of one of the network effects behind the site. The site is now large enough that any

important story will be submitted multiple times, enabling the site staff to pick the

most complete and well-formed submission for actual publication to the front page

of the site. This puts the regular submitters in tacit competition with each other to

create the best submission for key stories.

The continued success and popularity of the site owe as much to its anonymous con

tributors as to its regular, registered users. Slashdot could not have been the singular

"town hall" that it was in the wake of Columbine without allowing and supporting

anonymous posting. That aspect of the site has become ever more complicated to

manage and maintain, however.

There are legal threats to anonymous status. While Slashdot has yet to be asked to

turn over its logfiles, legislation from the DMCA to the Patriot Act has the potential

Slashdot Grows Up
*
* 387

to force Slashdot s hand on this issue. Furthermore, the Motion Picture Association

of America (MPAA) and the Recording Industry Association of America (RIAA) have

made it clear that they will use civil action wherever they think they have a chance of

uncovering the identity of supposed copyright violators.

One change at Slashdot in response to this new legal climate has been to handle log-

files differently. Most sites keep logfiles of daily visitors to the site, and differentiate

visitors by Internet Protocol (IP) number (the numerical address computers use to

identify themselves to each other over the Internet). This IP number can potentially

be used to backtrace where a particular visitor to a site came from. Slashdot now
scrambles the IP numbers in its logfiles using a strong encryption scheme, and then

discards the encrypting key. The result is a unique encrypted number associated with

each unique IP number, but no way, even by the Slashdot staff, to derive the original

IP number from the encrypted number stored in the logfiles.

As much of a problem as external challenges to anonymity is the mischievous behav

ior of a few anonymous posters. Given the high profile of Slashdot, there is prestige

in the "troll" community associated with defacing or bringing down the site.

Many attacks on the site attempt some form of exploit on the comment system.

These can include proxy flooding (repeated comment submissions dispersed via dif

ferent sources using open proxies; similar to a "denial-of-service" attack); comment

binging (attempting to overload the system with large comment submissions); and

script attacks (using a script to generate a nonsense comment that can be submitted

repeatedly at high speed).

Slashdot now has a maximum comment size, as well as a test for and block of open

proxies. It has an internal definition of a well-formed comment, and roughly 500

separate regular expression tests, written in Perl, to which each comment submis

sion is subjected. The attacks continue, but anonymous posting has never been dis

abled, and remains a bedrock principle of the site.

Sheer scaling issues have presented a different challenge. As of this writing, the site

delivers 3.9 million page views per day to 400,000 unique visitors.4 While Slash-

dot s initial moderation system worked well for a while, moderation has had to

become more sophisticated to both handle the larger volume of submissions and

Unique visitors (known in the trade as
"uniques")

is not a firm number. The industry norm is to

count the number of IP numbers on client machines of visitors. This approach can undercount

when visitors are behind a certain kind of proxies that shows only one IP number for everyone
behind the proxy, and can overcount because not every IP number is associated with an actual

person at the other end. The Slashdot staff uses a different method. Looking at historical data,

Slashdot has an idea of the ratio of registered to unregistered visitors, as well as the page views

per visit typical of registered and unregistered users. From this data, the number of unique
visitors can be extrapolated. By industry norms, the number of daily "uniques"

on Slashdot

would be roughly 750,000.

388X Communicating Many to Many

comments and take better advantage of the network effects inherent in an audience

of this size. The most notable change has been the introduction of metamoderation.

In metamoderation, select users are asked to moderate the moderators. The meta-

moderators review both comments and moderation decisions about those com

ments, and respond with a simple "agree, disagree, or no comment" response. Those

selected for metamoderation typically have about 20 moderation decisions to review

when metamoderation is turned on, and then might not metamoderate again for sev

eral weeks or months. The results give the staff and the Slashdot system a more fine

grained picture of which regular users of the site are effective at moderation, and

which are consistently contrarian.

One of the lessons of Columbine was that the site not only had to be restructured to

meet regular, steady growth in traffic, but also had to be capable of responding to

surges in traffic associated with an extrordinary news event. While the sequence of

events around Columbine never brought the site down, the staff realized they had, in

many ways, been fortunate. They had not covered Columbine the day of the event.

Katz s first story had been posted on a Friday, a low-traffic day. They had a weekend

to recognize the effects of his story and anticipate the follow-up. Overall they had a

whole week to work through the process. In many ways, Columbine was the excep

tion; it is unusual for a news event to play out that gradually.

September 1 1

3,500,000

3,000,000

2,500,000

2,000,000

1,500,000

1,000,000

500,000

9/13 9/14

Department of Defense money originally funded the research that became the archi

tecture of the Internet. That research mandate was based on the perceived needs of a

late- 60s Cold War nation. One of the design constraints was this: in the event of a

selective, possibly nuclear attack on the United States, could a data network be

designed that would continue to function despite outages to significant grid sections

of the network? In other words, could the architecture of the network allow for

graceful degradation and an opportunity to route around outages?

Two principles that underly the Internet architecture are decentralization and redun

dancy. Think, for example, about the way in which the Domain Name System (DNS)

is implemented. This is the protocol by which a computer knows how to associate a

September 11 X 389

human-readable address such as Slashdot.org with a computer-readable IP number.

DNS has no single, canonical server to provide an authoritative list of these map

pings. Such an approach would create a single point of failure that would serve as a

bottleneck under high-traffic conditions and would bring down all DNS-dependent

traffic in the event of a server failure.

Instead, DNS is more of a peer-to-peer network, with thousands of servers across the

Internet functioning as DNS servers. Any server can update its records, and its updates

will gradually be propagated to other DNS servers. In the course of a couple of days,

any change to one DNS server can reach all others. Nor does one need
"permission"

to

put up a DNS server. The requisite software is open source, and the Internet architec

ture is designed to automatically accept new servers or respond when encountering

missing or offline servers. The system is highly distributed and redundant.

Even the basic network rules about how packets are routed from one destination to

another follow these principles. Any computer sends a "test
packet" first, attempting to

establish a route to its destination. Once a route is established, actual data packets are

sent. If at any point, the originating computer fails to get an authenticating response for

that route, it explores for a new route and continues sending packets along the new

route. There are no canonical, authoritative routes from Point A to Point B; each net

work route is a process of discovery based on current network conditions.

The principles are simple enough: avoid single points of failure by relying on a highly

distributed network of peers rather than one or a few hubs around central, authorita

tive servers. The network protocols that employ these principles, however, are only

as robust as the applications that use them. All of that redundancy and flexibility in

routing does no good once email is queued up at an unresponsive destination server.

If millions of requests are all headed for the same web server, that becomes the de

facto center of an unresponsive hub.

In other words, to benefit from the design features of the Internet architecture, an

application must be specifically tailored to use those features. In fact, relatively few

applications do make use of this underlying structure. One application that does is

IRC, the staple of online communication in the open source community.

A look at the network list in a default setup of XChat (a common IRC client) reveals

dozens of IRC networks. Some are based around a common interest, like QuakeNet;

some are based around a geographical location, like OzNet. Many, like Freenode, are

general purpose. Within each of these networks will be dozens, or even hundreds of

channels, each of which represents a particular community or topic of interest. The

more popular networks easily have tens of thousands of users connected simulta

neously at any given time.

IRC puts very slight demands on a server; all of the transmissions are short strings of

text. Many universities and a large number of commercial sites volunteer server space

390X Communicating Many to Many

to run an IRC server. All of the servers that are part of a given network work together

to mirror the activity on the network. Typically servers in a network are partitioned

into groups, with each group responsibile for mirroring a subset of the channels on

that network. In the event that a given server goes offline, clients connected to chan

nels for which that server had responsibility automatically reconnect to another

server in that group. The view of a channel conversation that a particular user has,

remains the same even through several reconnects to different servers.

As early as 1998, the Slashdot staff had set up an IRC network, called Slashnet. Ini

tially this included a work channel for the staff to communicate with each other. This

made sense since the staff was not always together in one place, but it was also just a

natural form of communication for those with a Linux/open source background. A

public channel was also added, for members of the Slashdot audience to communi

cate with the staff. The work channel quickly split into two channels, one for actual

work communication, and another "water cooler" channel for idle conversation

among staff members. Over time, other channels appeared, many from users treating

Slashnet as just another IRC network, who were unaware that Slashnet and Slashdot

were in any way affiliated.

By September of 2001, Slashnet had become an indispensable form of communica

tion for the Slashdot staff. By this time, the staff was very distributed: Rob Malda and

a core group of programmers remained in Holland, Michigan, but editors Timothy
Lord and Robin Miller worked remotely; Timothy from various midwest locations,

and Robin from Maryland. Jeff Bates had moved to Boston, working out of the offices

of the parent company that had acquired Slashdot. 5

Slashnet was, in many ways, the last refuge for Slashdot s original core audience. As

the web site itself had become more mainstream, more about culture and less about

technology, Slashnet represented a technical hard core of the site s open source roots.

The barrier was not a very rigid one. While IRC channels can be moderated, and

access can be password restricted, Slashnet, like most networks, was wide open for

anyone to participate. In fact, though, the more mainstream online audience tended

to gravitate to one-to-one IM systems like AIM or Yahoo! Instant Messenger, rather

than the more text-based, more complex, and less user-friendly IRC.

Jeff Bates began the morning of September 1 1 at home in Boston before heading to

the company office. He started with a call to Northwest Airlines, hoping to rearrange
some business travel scheduled for later in the month. The call to Northwest was the

first he knew that anything out of the ordinary was transpiring that day.

5 Originally this was online media company Andover.net. Andover was acquired by VA Linux

Systems, and reformed as the wholly owned subsidiary OSDN, the Open Source Development
Network. Since then, VA Linux Systems has changed its name to VA Software, and OSDN has

changed its name to OSTG, the Open Source Technology Group.

September 11 ** 391

The woman at customer service told Jeff that a plane had flown into the World Trade

Center. She had not seen or heard a news report directly, but was instead repeating

what she had heard from other customers calling in that morning. Still on the phone,

Jeff turned on the television to watch events unfolding on CNN, all the while

describing what he was seeing to the woman at Northwest.

After talking to Northwest, Jeff called a friend s cell phone in Manhattan to make sure

he was OK. This call went through; many others, from many other people that day,

would not. Jeff left for the office wondering, as many people did in those early hours,

if this was some sort of freak accident or something more sinister.

Nine hundred miles away, in Holland, Michigan, Rob Malda was also beginning his

workday. For Rob, this involved logging on to the Slashnet staff IRC channel, check

ing his email, and reviewing the Slashdot submissions bin. Rob s first word of the

World Trade Center attacks came from monitoring discussions on IRC. With no

radio or television at hand, he attempted to look at the CNN and MSNBC web sites,

but both sites were already struggling under heavy load, and other than one small,

grainy photo from the CNN web site, Rob was unable to get any information. Only
the first plane had hit at this point, but the Slashdot submissions bin was already fill

ing with related submissions, and Rob quickly realized this was not going to be an

ordinary news day.

Slashdot reviews submissions 24 hours a day, 7 days a week. To provide this cover

age, the staff rotates who is in charge of the submissions bin. While any staff online

at a given time can review submissions and make suggestions, one person has to be

the final authority: only one person at a time can wear the pants in this family. That s

an official Slashdot job description: "Daddy Pants." On the morning of September 11,

Rob was wearing Daddy Pants. He made the decision that they would depart from

their normal coverage and focus exclusively on the World Trade Center story.

By the time Jeff arrived in the Boston office, he had heard on the radio that the sec

ond plane had hit, and everyone knew that some form of terrorist attack was under

way. Rob s decision to focus the coverage was the right one. By 9:30 A.M.. EST,

Slashdot was serving 30-40 pages per second off of its six mirrored web servers,

roughly double the usual traffic load.

It s significant to note the range of communication media the Slashdot staff was

involved with during the first 90 minutes of that morning: land line telephone, cell

phone, television, radio, web sites, email, and IRC. In his 1991 book Virtual Reality

Howard Reingold described cyberspace as where you are when you re on the phone.

His point, in part, was that we live in a vast and evermore pervasive telecommunica

tions network, and that oftentimes our location within that network is more signifi

cant than our geographical location.

332 X Communicating Many to Many

All of the Slashdot staff described that working day as one of feeling intimately con

nected to others at work, despite the fact that they were operating from at least five

different geographical locations. In fact, neither Rob nor Jeff can recall, and probably

never knew, where Timothy was that day. It could have been Texas, but it could just

as easily have been Tennessee. All that mattered was that he was there in channel on

IRC to contribute and help out.

It s also significant to note what part of the telecommunications network suffered that

day. Cellphone calls in and out of New York and Washington became increasingly

difficult, though some calls went through under remarkable and tragic circum

stances. Cellphone calls provide our most intimate historical record of what hap

pened within the World Trade Center itself, as well as what happened on the

doomed Flight 93 that crashed in Pennsylvania. Land-line long-distance calls would

experience bottlenecks nationally throughout the day. Television and radio provided

important early reports, but these became less effective later in the day as reporters

had difficulty getting on the scene.

News web sites suffered the most, many completely unprepared for the deluge of

traffic. Slashdot began a daylong battle to stay up and stay on top of events. The Col

umbine experience had alerted them to the need to overhaul the site infrastructure.

Many changes had been made; now those changes would be put to the test.

Thirty page views per second was well above Slashdot s normal load, but also about

the limit of what the site architecture was designed to handle. Around 10:00 that

morning, the backend database crashed, and the site was temporarily down. In fact,

Slashdot had a backup database server on hand, one with a more current version of

the database software (MySQL). This server was not yet online only because the staff

didn t want to take the site offline to make the switch. The database crash provided
an opportunity to quickly make that switch.

The new database server performed well, and now the bottleneck shifted to the web
servers themselves. The staff made some on-the-fly adjustments to caching limits on

the servers, and for the moment everything was functioning. It was now noon EST,
and the site was serving 50 pages per second. Rob took a short break, and for the

first time saw the actual video footage of the two crashes that morning.

As the staff struggled to keep the Slashdot web site up, a parallel phenomenon was

emerging. Traffic on Slashnet was swelling, as more and more people turned to IRC
as a way to communicate. The 200,000 pages per hour Slashdot s web site was now

serving was impressive enough. Yet at the same time, Slashnet had thousands, and

perhaps as many as 20,000 simultaneous users sharing information even more rap

idly. The Slashdot staff set up a moderated channel to bring some organization to the

process, but unmoderated public channels were springing up as well. There was one

channel for communicating with the staff, and another for just general discussion.

September 11 2*393

Many of the links Slashdot posted that day, and many of the inline comments and

quotes that appeared in stories, were pulled directly out of IRC on Slashnet. At a time

when major news networks had difficulty getting reporters to the scene, Slashdot had

eyewitness accounts coming in over IRC. At a time when major news web sites could

not keep up with the traffic or rapidly changing information, Slashdot persevered.

Some it was information, but some of it was a matter of dispelling misinformation
("I

heard a truck bomb went off outside the State Department".... "No, my dad works at

State, I just spoke to him, and nothing like that s going on"). Some of the concerns

were global ("Who s behind the attacks?"). Some of the concerns were terribly personal

("I
have a friend/loved one/family member who works in midtown Manhattan. .

.").

Behind the scenes, the Slashdot staff frantically stripped down functionality on the site

to keep the bare minimum of processes running and the maximum number of pages

flowing. Dynamic content was turned off. Reverse DNS lookup was turned off. Eventu

ally the ad server was turned off. Logfiles were turned off. After the initial database fail

ure early in the day, however, the site stayed up. At the peak, Slashdot was serving 70

pages per second. For the day, it served more than 3 million page views.6

As a nation, we ve never faced the kind of global telecommunications breakdown

that the Internet was architected to handle as gracefully as possible. We have, how

ever, seen episodes like September 11 that put a sudden and unexpected strain on

the telecommunications infrastructure, and where the graceful degradation for which

the Internet allows, matters a great deal. Taking advantage of that inherent robust

ness, however, requires a communication medium that follows the same architec

tural design and a group of communicators comfortable using that medium. Slash-

dot s successful coverage that day would not have been possible without IRC, a

protocol as distributed and robust as the Internet itself, and without Slashnet, a com

munity of users who knew how to make the most of that medium.

The word disintermediation has been much abused in the online world. The idea is sim

ple enough: where traditional news media "mediates" between audience and events, the

directness of the Internet should make this traditional mediation unnecessary. In prac

tice, disintermediation happens far less often and far less effectively than one might

think. Several elements need to be in place. First, there must be a genuine community of

like-minded communicators looking to interact directly. Second, the medium through

which they interact must be, to the degree possible, both responsive and transparent.

Finally, those enabling the medium must have the humility to do nothing more than

facilitate.

With Columbine, the Slashdot staff learned very quickly that they were not present

ing a story, but were instead in the midst of a story that was happening all around

them. The most useful thing they could do was get out of the way and let the story

Rob Malda has nicely summarized the day s behind-the-scenes work in his piece, "Handling the

Loads," at http://slashdot.org/article.pl?sid=01/09/13/154222.

394
*
C Communicating Many to Many

happen, let the Slashdot community connect to each other. September 11 proved

again the value of facilitating rather than mediating. By and large, the audience that

day did not notice or care that it was Slashdot they were using as their medium. Any
channel of communication that was real time, up-to-date, and available would have

sufficed. September 11 revealed which communications channels were up to that

challenge; which could be effective but informative; which could disintermediate

when disintermediation was needed most.

Conclusion

3,500,000

3,000,000

2,500,000

2,000,000

1,500,000

1,000,000

500,000

Fall Fall Fall Fall Fall Fall Fall Fall Fall

1997 1998 1999 2000 2001 2002 2003 2004 2005

In his influential essay, "The Cathedral & the Bazaar," published in the original Open

Sources, Eric Raymond offered an arresting metaphor to contrast the top-down

approach of traditional software development with the more grass-roots nature of

open source software development. Cathedral-style development happens in isola

tion from users and with rigid authority from the top. Bazaar-style development is

more community driven, without a clear line between developer and user, and fol

lows a more evolutionary design process.

People often mistake Raymond s metaphor, however. Too often the assumption is

made that the open source development community is a legion of programmers with

hundreds or thousands of contributions coming in to each project, as if somehow by
sheer numbers open source will triumph against its proprietary competitors. The

mistake in this view is to look at the open source community as a flat, homogeneous

organization.

Organizations seldom have so simple a structure. Online communities are not acci

dental organizations, thrown together by geography or family ties. Online communi
ties are a subset of intentional communities, groups formed by those with common
interests seeking out like-minded peers and exploiting the low communication cost

of the Internet to make those connections. These communities indeed have a struc

ture and a hierarchy. They are not so much a bazaar as they are a tribe.

Slashdot today serves more than 3.5 million page views a day. It is tempting to think

of its viewers as an audience, not a community. It is easy to think of its viewers as a

bazaar-style, unorganized mass. However, facilitating successful many-to-many

Conclusion *C 395

communication requires a more sophisticated view. Fundamentally, Slashdot is a

community, with the complex hierarchy all online communities have.

Rob Malda and Jeff Bates have commented that they see themselves not as staff ver

sus audience, but as one group with a continuum of privileges. At the base of this

hierarchy are the "anonymous cowards," who can read stories, submit stories, and

comment on stories, though their comments start from a lower ranking. Registered

users start from a higher position, with comments initially moderated higher, and

with their activity tracked and evaluated within the system. Moderators are selected

from among registered users, as are metamoderators. The paid staff have access to

the actual submissions bin, as well as access to activity data about users. Finally, the

staff member currently wearing Daddy Pants has ultimate authority over what sub

missions are actually posted to the front page. Parallel to all of this is the Slashnet

IRC network. Some channels are moderated. Some are private. Some are public and

open. Some moderated channels are moderated by Slashdot staff. Others are moder

ated and cover topics that have nothing to do with Slashdot itself. Some participants

on IRC see Slashnet as an important way to connect to the larger Slashdot commu

nity. Others think of themselves as part of the Slashdot community, but never partic

ipate on IRC. Yet as September 11 revealed, even those uninvolved in or unaware of

the IRC part of the community nonetheless benefit from it.

The system is authoritarian. So too is a tribe. Every position in this community has

its unique privileges, however. Staff members do not have the right to moderate or

metamoderate. Only registered users can do that. Furthermore, the system, though

authoritarian, relies essentially on a practice of "term limits." A moderator receives a

small number of moderation points, and once these are used, moderation rotates to

someone else. Metamoderators get about 20 or so moderations to evaluate, and then

metamoderation rotates to someone else. Even among the paid staff, no one has

absolute editorial authority; Daddy Pants rotates among all of them.

Slashdot and other online communities, like many traditional tribes, bestow author

ity and privilege based on actions and reputations. This form of many-to-many com

munication works because these communities are egalitarian, but not democratic:

everyone gets a voice, but not everyone gets a vote.

396** Communicating Many to Many

XX
SECTION 3

Appendixes

No discussion of open source could be complete without laying out the basic documents that are

foundational to the movement. The Open Source Definition and the GPL have much the same sta

tus within the open source community as the Declaration of Independence and the Bill of Rights.

Those documents, and other key open source licenses, are reprinted here in the appendixes.

Additionally, several short columns encapsulate some pivotal events in the evolution of Slashdot

discussed by Bates and Stone. While these columns are archived on Slashdot, they are fairly brief

and it seemed expedient to simply reprint them here.

XX
APPENDIX A

The Open Source Definition

The Open Source Definition is maintained and applied by the nonprofit Open Source

Initiative (OSI; http://opensource.org). The OSI has a board of directors made up of

key people from industry and the community involved in open source. Licenses may
be submitted to the OSI for review, and if, in the judgment of the OSI, they meet the

terms of the Open Source Definition, the term
"open

source license" may be applied
to them as OSI approved.

The Open Source Definition, Version 1 .9

Introduction

Open source doesn t just mean access to the source code. The distribution terms of

open-source software must comply with the following criteria:

1. Free Redistribution

The license shall not restrict any party from selling or giving away the software as a

component of an aggregate software distribution containing programs from several

different sources. The license shall not require a royalty or other fee for such sale.

2. Source Code

The program must include source code, and must allow distribution in source code

as well as compiled form. Where some form of a product is not distributed with

source code, there must be a well-publicized means of obtaining the source code for

no more than a reasonable reproduction cost preferably, downloading via the Inter

net without charge. The source code must be the preferred form in which a program
mer would modify the program. Deliberately obfuscated source code is not allowed.

Intermediate forms such as the output of a preprocessor or translator are not

allowed.

3. Derived Works

The license must allow modifications and derived works, and must allow them to be

distributed under the same terms as the license of the original software.

4. Integrity of The Author s Source Code

The license may restrict source-code from being distributed in modified form only if

the license allows the distribution of
"patch

files" with the source code for the purpose
of modifying the program at build time. The license must explicitly permit distribution

of software built from modified source code. The license may require derived works to

carry a different name or version number from the original software.

5. No Discrimination Against Persons or Groups

The license must not discriminate against any person or group of persons.

6. No Discrimination Against Fields of Endeavor

The license must not restrict anyone from making use of the program in a specific

field of endeavor. For example, it may not restrict the program from being used in a

business, or from being used for genetic research.

7. Distribution of License

The rights attached to the program must apply to all to whom the program is redis

tributed without the need for execution of an additional license by those parties.

8. License Must Not Be Specific to a Product

The rights attached to the program must not depend on the program s being part of a

particular software distribution. If the program is extracted from that distribution

and used or distributed within the terms of the program s license, all parties to whom
the program is redistributed should have the same rights as those that are granted in

conjunction with the original software distribution.

9. License Must Not Restrict Other Software

The license must not place restrictions on other software that is distributed along

with the licensed software. For example, the license must not insist that all other pro

grams distributed on the same medium must be open-source software.

400
*
C The Open Source Definition

XX
APPENDIX B

Referenced Open Source

Licenses

The Open Source Initiative (OSI; http://www.opensource.org) is a nonprofit organiza

tion with responsibility for approving open source licenses as applied to software.

Currently there are more than 50 OSI-approved licenses. Included here are the major
licenses referenced by essays in this volume.

The BSD License

The following is a BSD license template. To generate your own license, change the

values of OWNER, ORGANIZATION, and YEAR from their original values as given

here, and substitute your own.

Note: the advertising clause in the license appearing on BSD Unix files was officially

rescinded by the Director of the Office of Technology Licensing of the University of

California on July 22, 1999. He states that clause 3 is
"hereby

deleted in its
entirety."

Note the new BSD license is thus equivalent to the MIT License, except for the no-

endorsement final clause.

&lt;OWNER&gt; = Regents of the University of California

&lt;ORGANIZATION&gt; =
University of California, Berkeley

&lt;YEAR&gt; = 1998

In the original BSD license, both occurrences of the phrase "COPYRIGHT HOLDERS
AND CONTRIBUTORS" in the disclaimer read "REGENTS AND CONTRIBUTORS."

Here is the license template:

Copyright (c) &lt;YEAR&gt;, &lt;OWNER&gt;

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are

permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of

conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this

list of conditions and the following disclaimer in the documentation and/or other

materials provided with the distribution.

Neither the name of the &lt;ORGANIZATION&gt; nor the names of its contributors

may be used to endorse or promote products derived from this software without

specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBU

TORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT

NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT

NESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL

THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,

INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAM
AGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER

RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR

OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,

EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The GNU General Public License (GPL)

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license docu

ment, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and

change it. By contrast, the GNU General Public License is intended to guarantee your

freedom to share and change free software to make sure the software is free for all

its users. This General Public License applies to most of the Free Software Founda

tion s software and to any other program whose authors commit to using it. (Some

402
*
C Referenced Open Source Licenses

other Free Software Foundation software is covered by the GNU Library General

Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General

Public Licenses are designed to make sure that you have the freedom to distribute

copies of free software (and charge for this service if you wish), that you receive

source code or can get it if you want it, that you can change the software or use

pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you

these rights or to ask you to surrender the rights. These restrictions translate to certain

responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee,

you must give the recipients all the rights that you have. You must make sure that

they, too, receive or can get the source code. And you must show them these terms

so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this

license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author s protection and ours, we want to make certain that everyone

understands that there is no warranty for this free software. If the software is modi

fied by someone else and passed on, we want its recipients to know that what they

have is not the original, so that any problems introduced by others will not reflect on

the original authors reputations.

Finally, any free program is threatened constantly by software patents. We wish to

avoid the danger that redistributors of a free program will individually obtain patent

licenses, in effect making the program proprietary. To prevent this, we have made it

clear that any patent must be licensed for everyone s free use or not licensed at all.

The precise terms and conditions for copying, distribution, and modification follow.

Terms and Conditions for Copying, Distribution, and Modification

This License applies to any program or other work which contains a notice placed by
the copyright holder saying it may be distributed under the terms of this General

Public License. The
"Program," below, refers to any such program or work, and a

"work based on the Program" means either the Program or any derivative work

under copyright law: that is to say, a work containing the Program or a portion of it,

either verbatim or with modifications and/or translated into another language. (Here

inafter, translation is included without limitation in the term "modification.") Each

licensee is addressed as
"you."

Activities other than copying, distribution and modification are not covered by this

License; they are outside its scope. The act of running the Program is not restricted,

and the output from the Program is covered only if its contents constitute a work

The GNU General Public License (GPL) J J 403

based on the Program (independent of having been made by running the Program).

Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program s source code as

you receive it, in any medium, provided that you conspicuously and appropri

ately publish on each copy an appropriate copyright notice and disclaimer of

warranty; keep intact all the notices that refer to this License and to the absence

of any warranty; and give any other recipients of the Program a copy of this

License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at

your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus

forming a work based on the Program, and copy and distribute such modifica

tions or work under the terms of Section 1 above, provided that you also meet

all of these conditions:

a. You must cause the modified files to carry prominent notices stating that

you changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in

part contains or is derived from the Program or any part thereof, to be licensed

as a whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run,

you must cause it, when started running for such interactive use in the most

ordinary way, to print or display an announcement including an appropri

ate copyright notice and a notice that there is no warranty (or else, saying

that you provide a warranty) and that users may redistribute the program

under these conditions, and telling the user how to view a copy of this

License. (Exception: if the Program itself is interactive but does not nor

mally print such an announcement, your work based on the Program is not

required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of

that work are not derived from the Program, and can be reasonably considered indepen

dent and separate works in themselves, then this License, and its terms, do not apply to

those sections when you distribute them as separate works. But when you distribute the

same sections as part of a whole which is a work based on the Program, the distribution

of the whole must be on the terms of this License, whose permissions for other licensees

extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work

written entirely by you; rather, the intent is to exercise the right to control the distri

bution of derivative or collective works based on the Program.

404
*
C Referenced Open Source Licenses

In addition, mere aggregation of another work not based on the Program with the

Program (or with a work based on the Program) on a volume of a storage or distribu

tion medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2)

in object code or executable form under the terms of Sections 1 and 2 above pro

vided that you also do one of the following:

d. Accompany it with the complete corresponding machine-readable source

code, which must be distributed under the terms of Sections 1 and 2 above

on a medium customarily used for software interchange; or,

e. Accompany it with a written offer, valid for at least three years, to give any

third party, for a charge no more than your cost of physically performing

source distribution, a complete machine-readable copy of the correspond

ing source code, to be distributed under the terms of Sections 1 and 2 above

on a medium customarily used for software interchange; or,

f. Accompany it with the information you received as to the offer to distribute

corresponding source code. (This alternative is allowed only for noncom

mercial distribution and only if you received the program in object code or

executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifi

cations to it. For an executable work, complete source code means all the source

code for all modules it contains, plus any associated interface definition files, plus the

scripts used to control compilation and installation of the executable. However, as a

special exception, the source code distributed need not include anything that is nor

mally distributed (in either source or binary form) with the major components (com

piler, kernel, and so on) of the operating system on which the executable runs,

unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a

designated place, then offering equivalent access to copy the source code from the

same place counts as distribution of the source code, even though third parties are

not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly

provided under this License. Any attempt otherwise to copy, modify, sublicense or

distribute the Program is void, and will automatically terminate your rights under

this License. However, panics who have received copies, or rights, from you under

this License will not have their licenses terminated so long as such parties remain in

full compliance.

5. You are not required to accept this License, since you have not signed it. How

ever, nothing else grants you permission to modify or distribute the Program or

The GNU General Public License (GPL) 2 C 405

its derivative works. These actions are prohibited by law if you do not accept this

License. Therefore, by modifying or distributing the Program (or any work based

on the Program), you indicate your acceptance of this License to do so, and all

its terms and conditions for copying, distributing or modifying the Program or

works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the

recipient automatically receives a license from the original licensor to copy, distrib

ute or modify the Program subject to these terms and conditions. You may not

impose any further restrictions on the recipients exercise of the rights granted herein.

You are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or

for any other reason (not limited to patent issues), conditions are imposed on

you (whether by court order, agreement or otherwise) that contradict the condi

tions of this License, they do not excuse you from the conditions of this License.

If you cannot distribute so as to satisfy simultaneously your obligations under

this License and any other pertinent obligations, then as a consequence you may
not distribute the Program at all. For example, if a patent license would not per

mit royalty-free redistribution of the Program by all those who receive copies

directly or indirectly through you, then the only way you could satisfy both it

and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particu

lar circumstance, the balance of the section is intended to apply and the section

as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other

property right claims or to contest validity of any such claims; this section has

the sole purpose of protecting the integrity of the free software distribution sys

tem, which is implemented by public license practices. Many people have made

generous contributions to the wide range of software distributed through that

system in reliance on consistent application of that system; it is up to the author/

donor to decide if he or she is willing to distribute software through any other

system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a conse

quence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries

either by patents or by copyrighted interfaces, the original copyright holder

who places the Program under this License may add an explicit geographical

distribution limitation excluding those countries, so that distribution is permit

ted only in or among countries not thus excluded. In such case, this License

incorporates the limitation as if written in the body of this License.

406
*
x Referenced Open Source Licenses

9. The Free Software Foundation may publish revised and/or new versions of the Gen

eral Public License from time to time. Such new versions will be similar in spirit to

the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a

version number of this License which applies to it and
"any

later version," you
have the option of following the terms and conditions either of that version or of

any later version published by the Free Software Foundation. If the Program
does not specify a version number of this License, you may choose any version

ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose

distribution conditions are different, write to the author to ask for permission.

For software which is copyrighted by the Free Software Foundation, write to the

Free Software Foundation; we sometimes make exceptions for this. Our decision

will be guided by the two goals of preserving the free status of all derivatives of

our free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

1. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICA

BLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY

RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS"

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE

RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

2. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN

WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE,
BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,

INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS

OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED

BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE

WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY

HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

The GNU General Public License (GPL) X 407

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to

the public, the best way to achieve this is to make it free software which everyone

can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the

start of each source file to most effectively convey the exclusion of warranty; and each file

should have at least the
"copyright"

line and a pointer to where the full notice is found.

One line to give the program s name and a brief idea of what it does.

Copyright (C)
&lt;year&gt;

&lt;name of author

This program is free software; you can redistribute it and/or modify it under the

terms of the GNU General Public License as published by the Free Software

Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY

or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public

License for more details.

You should have received a copy of the GNU General Public License along with

this program; if not, write to the Free Software Foundation, Inc., 59 Temple

Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in

an interactive mode:

Gnomovision version 69, Copyright (C) year name of author Gnomovision

comes with ABSOLUTELY NO WARRANTY; for details type show w . This is

free software, and you are welcome to redistribute it under certain conditions;

type show c for details.

The hypothetical commands show w and show c should show the appropriate

parts of the General Public License. Of course, the commands you use may be called

something other than show w and show c; they could even be mouse-clicks or

menu items whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if

any, to sign a "copyright disclaimer" for the program, if necessary. Here is a sample;

alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program

Gnomovision (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989

Ty Coon, President of Vice

408 ^ C Referenced Open Source Licenses

This General Public License does not permit incorporating your program into propri

etary programs. If your program is a subroutine library, you may consider it more

useful to permit linking proprietary applications with the library. If this is what you

want to do, use the GNU Library General Public License instead of this License.

The Sleepycat License

Copyright (c) 1990-1999 Sleepycat Software. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are

permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of

conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this

list of conditions and the following disclaimer in the documentation and/or other

materials provided with the distribution.

Redistributions in any form must be accompanied by information on how to

obtain complete source code for the DB software and any accompanying software

that uses the DB software. The source code must either be included in the distribu

tion or be available for no more than the cost of distribution plus a nominal fee,

and must be freely redistributable under reasonable conditions. For an executable

file, complete source code means the source code for all modules it contains. It

does not include source code for modules or files that typically accompany the

major components of the operating system on which the executable file runs.

THIS SOFTWARE IS PROVIDED BY SLEEPYCAT SOFTWARE "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR

PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED. IN NO EVENT SHALL
SLEEPYCAT SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDEN

TAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SER

VICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHER
WISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF

ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright (c) 1990, 1993, 1994, 1995 The Regents of the University of California.

All rights reserved.

The Sleepycat License * C 409

Redistribution and use in source and binary forms, with or without modification, are

permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of

conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this

list of conditions and the following disclaimer in the documentation and/or other

materials provided with the distribution.

Neither the name of the University nor the names of its contributors may be

used to endorse or promote products derived from this software without spe

cific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS"

AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIM

ITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCI

DENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD

ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SER

VICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHER

WISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF

ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright (c) 1995, 1996 The President and Fellows of Harvard University. All

rights reserved.

Redistribution and use in source and binary forms, with or without modification, are

permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of

conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this

list of conditions and the following disclaimer in the documentation and/or other

materials provided with the distribution.

Neither the name of the University nor the names of its contributors may be

used to endorse or promote products derived from this software without spe

cific prior written permission.

THIS SOFTWARE IS PROVIDED BY HARVARD AND ITS CONTRIBUTORS "AS

IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT

NESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL

410
*
* Referenced Open Source Licenses

HARVARD OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLI
GENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The Creative Commons License

Attribution-NonCommercial-NoDerivs2.5

You are free:

to copy, distribute, display, and perform the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author

or licensor.

Noncommercial. You may not use this work for commercial purposes.

No Derivative Works. You may not alter, transform, or build upon this work.

For any reuse or distribution, you must make clear to others the license terms of this

work.

Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

Full Text of License Follows:

Attribution-NonCommercial-NoDerivs2.5

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT
PROVIDE LEGAL SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT CRE
ATE AN ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES
THIS INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO
WARRANTIES REGARDING THE INFORMATION PROVIDED, AND DISCLAIMS
LIABILITY FOR DAMAGES RESULTING FROM ITS USE.

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS
CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS

PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF
THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPY
RIGHT LAW IS PROHIBITED.

The Creative Commons License ** 411

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT
AND AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. THE LICENSOR
GRANTS YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR
ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

1. Definitions

a. "Collective Work" means a work, such as a periodical issue, anthology or

encyclopedia, in which the Work in its entirety in unmodified form, along

with a number of other contributions, constituting separate and indepen

dent works in themselves, are assembled into a collective whole. A work that

constitutes a Collective Work will not be considered a Derivative Work (as

defined below) for the purposes of this License.

b. "Derivative Work" means a work based upon the Work or upon the Work

and other pre-existing works, such as a translation, musical arrangement,

dramatization, fictionalization, motion picture version, sound recording, art

reproduction, abridgment, condensation, or any other form in which the

Work may be recast, transformed, or adapted, except that a work that con

stitutes a Collective Work will not be considered a Derivative Work for the

purpose of this License. For the avoidance of doubt, where the Work is a

musical composition or sound recording, the synchronization of the Work

in timed-relation with a moving image ("synching")
will be considered a

Derivative Work for the purpose of this License.

c. "Licensor" means the individual or entity that offers the Work under the

terms of this License.

d.
"Original Author" means the individual or entity who created the Work.

e. "Work" means the copyrightable work of authorship offered under the terms

of this License.

f. "You" means an individual or entity exercising rights under this License who

has not previously violated the terms of this License with respect to the

Work, or who has received express permission from the Licensor to exercise

rights under this License despite a previous violation.

2. Fair Use Rights. Nothing in this license is intended to reduce, limit, or restrict

any rights arising from fair use, first sale or other limitations on the exclusive

rights of the copyright owner under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor

hereby grants You a worldwide, royalty-free, non-exclusive, perpetual (for the

duration of the applicable copyright) license to exercise the rights in the Work as

stated below:

412 X Referenced Open Source Licenses

a. to reproduce the Work, to incorporate the Work into one or more Collec

tive Works, and to reproduce the Work as incorporated in the Collective

Works;

b. to distribute copies or phonorecords of, display publicly, perform publicly,

and perform publicly by means of a digital audio transmission the Work

including as incorporated in Collective Works;

The above rights may be exercised in all media and formats whether now known or

hereafter devised. The above rights include the right to make such modifications as

are technically necessary to exercise the rights in other media and formats, but other

wise you have no rights to make Derivative Works. All rights not expressly granted

by Licensor are hereby reserved, including but not limited to the rights set forth in

Sections 4(d) and 4(e).

4. Restrictions.The license granted in Section 3 above is expressly made subject to

and limited by the following restrictions:

a. You may distribute, publicly display, publicly perform, or publicly digitally

perform the Work only under the terms of this License, and You must

include a copy of, or the Uniform Resource Identifier for, this License with

every copy or phonorecord of the Work You distribute, publicly display,

publicly perform, or publicly digitally perform. You may not offer or impose

any terms on the Work that alter or restrict the terms of this License or the

recipients exercise of the rights granted hereunder. You may not sublicense

the Work. You must keep intact all notices that refer to this License and to

the disclaimer of warranties. You may not distribute, publicly display, pub

licly perform, or publicly digitally perform the Work with any technological

measures that control access or use of the Work in a manner inconsistent

with the terms of this License Agreement. The above applies to the Work as

incorporated in a Collective Work, but this does not require the Collective

Work apart from the Work itself to be made subject to the terms of this

License. If You create a Collective Work, upon notice from any Licensor You

must, to the extent practicable, remove from the Collective Work any credit

as required by clause 4(c), as requested.

b. You may not exercise any of the rights granted to You in Section 3 above in

any manner that is primarily intended for or directed toward commercial

advantage or private monetary compensation. The exchange of the Work for

other copyrighted works by means of digital file-sharing or otherwise shall not

be considered to be intended for or directed toward commercial advantage or

private monetary compensation, provided there is no payment of any mone

tary compensation in connection with the exchange of copyrighted works.

The Creative Commons License X 413

c. If you distribute, publicly display, publicly perform, or publicly digitally

perform the Work, You must keep intact all copyright notices for the Work
and provide, reasonable to the medium or means You are utilizing: (i) the

name of the Original Author (or pseudonym, if applicable) if supplied, and/

or (ii) if the Original Author and/or Licensor designate another party or par

ties (e.g. a sponsor institute, publishing entity, journal) for attribution in

Licensor s copyright notice, terms of service or by other reasonable means,

the name of such party or parties; the title of the Work if supplied; and to

the extent reasonably practicable, the Uniform Resource Identifier, if any,

that Licensor specifies to be associated with the Work, unless such URI does

not refer to the copyright notice or licensing information for the Work. Such

credit may be implemented in any reasonable manner; provided, however,

that in the case of a Collective Work, at a minimum such credit will appear

where any other comparable authorship credit appears and in a manner at

least as prominent as such other comparable authorship credit.

d. For the avoidance of doubt, where the Work is a musical composition:

i. Performance Royalties Under Blanket Licenses. Licensor reserves the

exclusive right to collect, whether individually or via a performance

rights society (e.g. ASCAP, BMI, SESAC), royalties for the public perfor

mance or public digital performance (e.g. webcast) of the Work if that

performance is primarily intended for or directed toward commercial

advantage or private monetary compensation.

ii. Mechanical Rights and Statutory Royalties. Licensor reserves the exclu

sive right to collect, whether individually or via a music rights agency or

designated agent (e.g. Harry Fox Agency), royalties for any phon-
orecord You create from the Work ("cover version") and distribute,

subject to the compulsory license created by 17 USC Section 115 of the

US Copyright Act (or the equivalent in other jurisdictions), if Your dis

tribution of such cover version is primarily intended for or directed

toward commercial advantage or private monetary compensation.

e. Webcasting Rights and Statutory Royalties. For the avoidance of doubt,

where the Work is a sound recording, Licensor reserves the exclusive right

to collect, whether individually or via a performance-rights society (e.g.

SoundExchange), royalties for the public digital performance (e.g. webcast)

of the Work, subject to the compulsory license created by 17 USC Section

114 of the US Copyright Act (or the equivalent in other jurisdictions), if

Your public digital performance is primarily intended for or directed toward

commercial advantage or private monetary compensation.

414 x C Referenced Open Source Licenses

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING,

LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTA

TIONS OR WARRANTIES OF ANY KIND CONCERNING THE WORK,

EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITH

OUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY, FITNESS

FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE

OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF

ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURIS

DICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES,

SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability.

EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT

WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY

SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY

DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK,

EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH

DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate automatically

upon any breach by You of the terms of this License. Individuals or entities

who have received Collective Works from You under this License, however,

will not have their licenses terminated provided such individuals or entities

remain in full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8

will survive any termination of this License.

b. Subject to the above terms and conditions, the license granted here is per

petual (for the duration of the applicable copyright in the Work). Notwith

standing the above, Licensor reserves the right to release the Work under

different license terms or to stop distributing the Work at any time; pro

vided, however that any such election will not serve to withdraw this

License (or any other license that has been, or is required to be, granted

under the terms of this License), and this License will continue in full force

and effect unless terminated as stated above.

8. Miscellaneous

a. Each time You distribute or publicly digitally perform the Work or a Collec

tive Work, the Licensor offers to the recipient a license to the Work on the

same terms and conditions as the license granted to You under this License.

b. If any provision of this License is invalid or unenforceable under applicable

law, it shall not affect the validity or enforceability of the remainder of the

The Creative Commons License ** 415

terms of this License, and without further action by the parties to this agree

ment, such provision shall be reformed to the minimum extent necessary to

make such provision valid and enforceable.

c. No term or provision of this License shall be deemed waived and no breach

consented to unless such waiver or consent shall be in writing and signed by

the party to be charged with such waiver or consent.

d. This License constitutes the entire agreement between the parties with

respect to the Work licensed here. There are no understandings, agreements

or representations with respect to the Work not specified here. Licensor

shall not be bound by any additional provisions that may appear in any

communication from You. This License may not be modified without the

mutual written agreement of the Licensor and You.

Creative Commons is not a party to this License, and makes no warranty whatsoever

in connection with the Work. Creative Commons will not be liable to You or any

party on any legal theory for any damages whatsoever, including without limitation

any general, special, incidental or consequential damages arising in connection to

this license. Notwithstanding the foregoing two (2) sentences, if Creative Commons

has expressly identified itself as the Licensor hereunder, it shall have all rights and

obligations of Licensor.

Except for the limited purpose of indicating to the public that the Work is licensed

under the CCPL, neither party will use the trademark "Creative Commons" or any

related trademark or logo of Creative Commons without the prior written consent of

Creative Commons. Any permitted use will be in compliance with Creative Com

mons then-current trademark usage guidelines, as may be published on its website

or otherwise made available upon request from time to time.

Creative Commons may be contacted at http://creativecommons.org/.

This license may be found at: http://creativecommons.Org/licenses/by-nc-nd/2.5/

41G
*
C Referenced Open Source Licenses

XX
XX APPENDIX C

Columns from Slashdot

The chapter written by Bates and Stone refers to several columns that appeared in

Slashdot around the time of certain key events. Those columns are republished here.

Simple Solutions

Contributed by CmdrTaco on Monjan 12 at 8:50AM EST

From the editorials dept

This is the first of hopefully many Slashdot.org Editorials. In addition to just report

ing the news, the Slashdot Team really wishes to try to put out new ideas, or share

other information that our readers may find helpful, interesting, or entertaining.

We re standing at an amazing crossroad here. The Free Software Foundation, and

especially the Linux OS have gained amazing ground. The mainstream press (e.g. the

ZiffDavis marketing monopoly) actually now regularly acknowledge Linux along side

MacOS and Windows as being a "Real" Operating system.

And then there is the browser world, where the race was once one horse, then hun

dreds, and now 2. Microsoft and Netscape have been battling it out for some time

now, and Netscape s once unstoppable 70% market share has begun crumbling.

Meanwhile the Free Software world is facing a battle of its own. The Commercial

browser world has been reduced to the big ones, but the free world is producing

Mneumonic, Gzilla, and various other smaller projects. Many talented programmers

slave away on these products, but each day, Microsoft gains ground.

Add the final piece of data to the mix:Netscape is losing money as well as browser

market share. What s a company to do? Maybe the solution is simple:GPL Netscape s

Source Code.

So now that you ve stopped laughing, let s talk about this seriously for a moment.

Let s look at why Netscape should seriously consider this:

Talented programmers from around the world would actively improve Netscape s

browser. The Free Software Movement has proven that if some control is enforced at

the center (eg Linus) programs can develop communally. Netscape would not have

to pay most of the development cost of their software. Coordination, and key pro

grammers would be essential, but minor once coders around the world join in.

Netscape needs browser dominance to fuel its server market, and to remain synonymous

with the Internet. If current trends continue, MS will = the Internet in another year.

Netscape is losing money on the browser market. They need to release their browser

for free to compete with Microsoft anyway.

Source code would allow compilation on other systems- say a Pentium optimized

version, or whatever other optimizations become available for platform X.

Excellent Publicity generated by such an original move would earn Netscape respect

from the Free Software junkies who often have somewhat negative feelings towards

Netscape. These Free Software Junkies are gaining control of much of the world s IS

departments, and Netscape s good name will get them places in these corporate worlds.

So that s all well and good for Netscape, but what about the rest of us. Netscape has

taken a lot of heat for its gapping shortcomings. In particular its bloated size and

slow performance. Why would the Free Software World want to take on this project?

GPL means we would have a state of the art free browser.

Netscape could be ported to GTK or Qt for faster performance and lower memory

requirements than Motif.

Various web browser efforts could focus on a single project (which could have many

faces) which already has so many of the features they need. Instead of these projects

dividing the effort, they could unify.

The superior programming talents of the world s programmers would make Netscape

the superior browser, which would win over converts back from Microsoft even on

Wintel boxes where MS is gaining support.

New browsers derived from Netscape for more specific tasks could share things like

an HTML rendering engine for commonality.

Now I realize that there are problems. Large parts of Netscape s code aren t really

Netscape s to give away. The "about:" screen of Netscape Communicator lists 12

418 ^ C Columns from Slashdot

companies besides Netscape including Apple, Macromedia, Symantec and many oth

ers. Perhaps these modules are removed. Perhaps these modules could also GPLd.

Netscape does need to maintain the primary code base, and finding someone with

the charisma of Linus to steerhead the development of code from hundreds of peo

ple will me a challange. Then there are problems with large portions of the Free Soft

ware world disliking Netscape. I really hope this could change, especially if they

were given the opportunity to maintain it.

I really think this could be the answer to a lot of problems. With the power of an

Internet full of programmers, even Microsoft s Billions of R&D dollars would be

threatened. And we would be guaranteed a real choice even if IE4 becomes the stan

dard on Windows boxes.

What do you think?

ROB "CMDRTACO" MALDA

Why Kids Kill

Posted byJonKatz on Fri Apr 23, 99 10:00 AM

from the hysteria-on-the-net dept.

Nightmarish high school massacres like the one in Littleton are now an almost ritual

istic part of American life. And increasingly when they occur, journalists and educa

tors blame new media like the Internet, computer games like Doom or violent mov
ies. Why kids kill this way is an urgent and complicated question. But teenaged

crime isn t rising, it s falling. And there s no evidence that the Net or other new

media are the reason for massacres.

The images were familiar, yet surreal.

Media reports of books about "Doom," animated clips from the computer game, TV
shots of websites with ugly images, ominous reports of heavy metal bands and film

clips of "Natural Bom Killers."

"What is known," said a CNN correspondent Wednesday night, "is that the mem
bers of the Trench Coat Mafia spent a lot of time playing computer games on the

Internet." They had become obsessed with online killing, reported another TV

reporter. They had delved into militia and hate-group websites, some papers said.

The fallout was, as always, nearly instantaneous.

In Vancouver, Washington, e-mailed Enzo Falzon, high school students were pulled

aside as they came through the front door and told they weren t allowed to wear

trenchcoats. In a Philadelphia suburb, e-mailed Tim, (who asked that his last name

remain anonymous), kids who play Doom were offered counseling. In Maine, e-

mailed Vektor, who s 14, his parents made him open his private computer files so

they could look through and make sure he wasn t doing anything "anti-social."

Why Kids Kill
*

419

By now, this schoolyard nightmare is as ritualistic as it is horrific.

We see televised scenes of kids running and sobbing, of SWAT teams creeping

through schools and bloodied bodies carted out followed by dark reports about

hate on the Net, violence on TV and in movies. Everyone seems bewildered, uncom

prehending.

Almost always, we are as confused as we are horrified, since young killers take their

own lives or offer no coherent explanation, leaving us with questions but not answers.

Since there are rarely trials, there is rarely any resolution, any understanding.

In June of 1988, writing for Hotwired, I wrote a column called
"Why

Kids Kill" after

Kipland Kinkel of Springfield, Oregon, killed four people, including his parents, and

wounded 22 more.

Not much has changed a year later, especially when it comes to knee-jerk, ignorant

stereotypes from the media and from educators about kids, the Net, geeks and the

violence allegedly inspired by the digital screen culture.

Federal agencies and academics studying this kind of episodic, uniquely American mas

sacre, find little of any, connection between murders and media, digital or otherwise.

Kids being warned and counseled by fearful administrators and teachers ought to

know that overall, teenage violence is way down in America, at its lowest levels since

the Depression. In supposedly media-saturated, violent urban areas like New York

City, Chicago and LA, schoolyard massacres are unknown. Nor has one ever

occurred in Canada, even though Canadian kids watch almost the same media as

American kids, and use the Net in even greater numbers.

What do we know about these horrible eruptions? Almost all of the killers have been

white, teenaged males who are emotionally disturbed. Almost all lived in suburban

or rural areas, the children of working or middle-class families. They ve been gener

ally described as well-parented.

And in almost single case, nobody really knows why they did what they did. They

suffered various forms of social cruelty and exclusion, as so many of their peers also

have, and they got their hands on especially lethal weaponry, particularly guns.

Almost always, their friends and classmates and teachers are stunned and disbeliev

ing. Some of the shooters have been avid media and computer users. Others weren t.

According to federal statistics, no school shootings occurred in 1994; in 1997, there

were four incidents. In 1998, apart from the Springfield killings, an 11 -year-old-old

boy and his 13-year-old friend were charged with killing four students and a teacher

and wounding 10 others in Jonesboro, Arkansas. A high-school senior shot and

killed a student in a parking lot in Fayetteville, Tennessee. In Edinboro, Pennsylva

nia, a 14-year-old boy was accused of killing a teacher and wounding two students

and another teacher at an eighth grade graduation. Two days later, a 15-year-old girl

420 X Columns from Slashdot

was shot in the leg in suburban Houston high-school classroom. In Washington, a

15-year-old boy got off his school bus carrying a gun, then went home and shot him

self in the head. Now there is Littleton, Colorado, 1999 s first school massacre, with

at least fifteen dead.

Although experts, therapists and sociologists have crammed TV talk shows to offer

various theories about the contagion of teenage violence, it is clear that no one yet

understands why these incidents occur. Sociologists like Elaine Showalter of Prince

ton have written about media hysterias, contagions transmitted by the speed and

power of media imagery in stories about the killings themselves. Some psychologists

believe that when disturbed kids see the massive amount of media attention these

shootings get, they begin fantasizing about this kind of attention being focused on

their own, often unhappy, lives.

Other experts blame the availability of guns. Obviously, the ready availability of lethal

weapons is significant in this kind of violence, but crime among teenagers has been

plummeting for years now, even as the number of guns in the United States has risen.

And persistent efforts by journalists to link the massacres to hate-sites on the Net or

to games like "Doom" and, before that, to "Dungeons & Dragons" don t hold up
either. There are no consistent patterns of media behavior to link these killers, no

single trait of movie-going, gaming or Net use.

Tens of millions of kids all over the world play computer games. The biggest users of

new media recreational technologies are middle-class kids, since they have the

money to afford the technology. Yet violence among this group, never very high,

again has been plummeting even as online use has mushroomed.

Yet despite the confusion about the cause of these killings, all across America, newspa

pers and TV stations are warning parents about computer games, suggesting that their

sons and daughters might be secretly turning into potential mass murderers online.

This is willful ignorance. There s no mystery about the greatest dangers to children.

Every day, writes Don Tapscott in Growing Up Digital, three children in the United

States are murdered or die as a result of injuries inflicted by their parents or caretak

ers. Of the annual three million reported cases of child abuse, 127,000 cases involve

child abandonment. Each year, and throughout the 90 s, the National Center for

Missing and Exploited Children reports only a handful of child abuse cases related to

the Internet. Of the 23 cases tracked from March 1996, to March, 1997, 10 involved

the transfer of pornography, an adult soliciting sexual favors from minors, or sexual

contact initiated over the Net. Of the remaining 13 cases, two involved police offic

ers posing as children, and in two others the girls had previous histories as run

aways. Nine others involved children over age 16 running away from home, alleg

edly to meet online acquaintances.

Why Kids Kill
*

421

What these statistics indicate, Tapscott says, is that "children are 300,000 times

more likely to be abused by their own relatives than by someone they have met

over the Internet."

As horrific as massacres like Littleton are, they are also extraordinarily rare. Statisti

cally, children are more likely to have an airplane fall out of the sky and kill them

than they are to be shot in school, despite the staggering amount of media coverage.

Sissella Bok of Harvard, whose book Mayhem examined the effects of violence in

media, writes that young people s lives are saturated with graphic violence in a way
that s different and more dangerous than in previous generations.

"We have movie role models showing violence as fun, and video games where you

kill, and get rewarded for killing, for hours and hours." It is, she wrote, a
"very

com

bustible mix, enraged young people with access to semiautomatic weapons, exposed

to violence as entertainment, violence shown as exciting and thrilling."

There s no question that violent imagery is ubiquitous in screen culture, from gam

ing to TV. But these comparisons seem facile and unknowing. Gaming is intensely

creative, in some contexts Quake 3, Unreal, Ultima almost approaching a new art

form. The animation is rich and multi-dimensional, and violence is stylized, often

presented more as a strategic challenge like chess than anything truly brutal or

graphically violent. If the stylization of violence is a problem, it doesn t show up any

where in crime or violence statistics involving computer users.

If Bok is right, it would. Why would there be a decline in youth violence even as

"violent imagery"
in the media has indeed increased, along with Web use, cable s

share of audience, rap and hip-hop (also supposed to be inducing the young to vio

lence), and movie attendance?

More relevant questions might be: Why are so many of these killers male and mid

dle-class, rather than the poor or the underclass? Why do these assaults occur almost

exclusively in rural or suburban areas? Why are these kids able to hide even severe

emotional disturbance from the people closest to them?

Perhaps the most shocking thing about massacres like Littleton is that, for all of the

massive amounts of coverage brought to bear on them, there really isn t anything

approaching a consensus about why they occur. Since educators and authorities

don t know what to do, what they tend to do is dumb.

Since the kids they re supposed to be protecting know quite well that wearing trench

coats, going online or watching movies isn t dangerous in and of itself, mostly what

educators and journalists end up demonstrating to kids is that they re clueless.

JON KATZ

422 * C Columns from Slashdot

XX
Index

16-bit Windows API, 46

32-bit to 64-bit computing and POSIX

adaptability, 43-44

3Com 3C501 Ethernet card, 141

abstract types in POSIX, 43-44

AbulEdu project, 184

academic licenses, 75

academic research opportunities for

biotech, 287

accidental vs. intended discoveries of uses

for products, 341-343

ACLs, Win32, 48-50

ADAE (Agence pour le Developpement de

1 Administration

Electronique), 175

Adams, Rick, 262

Adkins, Robert, xvi, 189-196

Adler, Stephen, 379

Advisory Board for Nupedia, 309-311, 313,

316

AENOR compatibility certificate, 179

aerospace industry, rise of, 298

AFFS (Association for Free Software), 167

AFUL (Association Francophone des

Utilisateurs de Linux et des

Logiciels Libres), 166

Alcove (France), 168

Allchin, Jim, 257

Allen, R. C, 351

Allison, Jeremy, xvi, 37-55

Amadeu, Sergio, 215, 217

amateur astronomers, responsible for

innovations to equipment, 351

Amazon.com, success due to leverage of

user community, 264

AMOS project, 174

Andago (Spain), 168

Anders, Mark, 263

AnkurBangla project (desktop

localization), 193

anonymous cowards (non-logged-in

posters), 382, 396

anonymous postings on Slashdot, 380, 387

ANSOL (Associacao Nacional para o

Software Livre), 167

anticircumvention/antitools provisions of

DMCA, 154-156

antiresearch provision of DMCA, 157

AOL, helping spin out Mozilla

project, 13

Apache 2 project, 69

Apache chunked encoding problem, 57

Apache project and CollabNet, 263

ApacheCon Europe, 166

Apple

mixing platforms/silos with free/

open source software, 245

open source commoditization

strategy, 248

APRIL (Association pour la Promotion

et la Recherche en

Informatique Libre), 166

architecture of participation, 266-268

AREVA group, 170

Armer, Paul, 305

Arora, Seema, 164

The Art of Unix Programming, 256

Asay, Matthew N., xvi, 103-119

Asianux, standardizing Linux in

Asia, 207

"Ask Slashdot" section of web site, 386

ASP business model, 117

ASP.NET, origin of, 263

Aspray, William, 305

Associazione Software Libero

(Italy), 167

astronomy equipment, innovations to,

discovered by amateurs, 351

astroturfers, dealing with, in open
source projects, 276

attacks made on Slashdot site, 388

Atviras kodas Lietuvai (Open Source for

Lithuania), 167

audiences, selling security to, 61

Augustin, Larry, 109, 239

authors of OSS and reputation, 145

automatic programming system,

discussing, 299

automotive innovations made by the

community, 350

AutoZone sued by SCO, 251

Axmark, David, 170

B

Babbage, Charles, 269

backward compatibility and share

modes in Win32, 51

Baker, Mitchell, xvii, 3-19

Baldwin, C, 344

Banco do Brasil, adoption of Java, 225

Barnesandnoble.com vs. Amazon.

com, 264

Barrapunto news site, 166

Bastiat, Frederic, 148

Bastok, Frederic, 169

Bates, Jeff, xvii, 373-396

Bayh-Dole act of 1980, 284

Beagle, Christine, 12

"because of money-making

principle, 234

Behlendorf, Brian, 248, 263

"benevolent dictatorship", acting as, in

OSS projects, 126, 130

Bentler, Yonchai, 217

Berners-Lee, Tim, 267

Bernstein, Daniel J., 144

Bernstein, Morton I., 305

BharateeyaOO project (desktop

localization), 193

big pharma vs. small biotech

companies, IP issues for, 286

Binary Difference Analysis tool, 65

BIND (Berkeley Internet Name

Daemon)
DNS (Domain Name System)

and, 259

resolver problems, 57

"biob ricks" (presynthesized DNA), 291

bioinformatic software and synthetic

biology, 290

Biological Innovation for Open Society

initiative (BIOS), 289

biology, open source, 281-296

alternative routes to drug

development, 287-290

future trends in, 293-296

risk of biological hacking, 292-293

synthetic biology, 290-292

biotech boom, 283

424 X Index

biotechnology

commercial, beginnings of, 283

intellectual property and growing

challenges, 285-287

modern, the rise of, 282-284

patents aggressively sought

for, 284

Biotechnology Industry Organization

(BIO), 284

bioweapon threats, 292

BitKeeper, 29

Blizzard and the bnetd project, 152

blockbuster drugs, 286

Blockstackers, 374-375, 383, 386

blog entry about open source

security, 57-59

BluePoint (Chinese Linux

distributor), 201

bnetd project (Blizzard), 152

Bok, Sissella, 422

Bomis.com, 310-312, 330

bootstrapping product

complements, 132

Boston Consulting Group, surveys done

by, 127

"both source" business model, 114

Boyer, Herbert, 282

branching in version control

systems, 28

Brand, Stewart, 237, 242

Brazil

developing software livre

movement in, 214

Java-based tools used in, 226

livre vs. gratis (terms meaning
free), 212

market issues and software livre

movement, 213

Microsoft vs. FOSS

movement, 216

Brent, Roger, 291

Broadcast Flag rule (FCC), 150, 158

Brooks, Frederick, 32, 363, 365

browser wars, 4

BSD License, 401

Buchanan, J. M., 355

bugs
in open source and proprietary

software, 32

vs. security vulnerabilities, 60

bug-tracking system for Mozilla, 6

Bugzilla, 6

Building 20 at MIT (a Low Road

building), 244

The Bunker, 57

Bureaucracy Bottleneck, roadblock to

company growth, 108

Burton Matrix, 247, 248

Burton, Craig, 234, 237, 246

Burton, Michael, 302

Bush, Vannevar, 282

business and Freemacs, 139-141

business and politics, 71

business models

ASP model, 117

"both source" model, 114

code-level service model, 118

dual-license model, 116

for Linux, 97-99

consequences of future

directions, 100-102

for open source, 113-118

in China, 202

managed source model, 118

marketplace view of, 127-129

mixed source model, 114

professional open source

model, 115

services model, 115

business tutorial, 143

byte range locks, setting up in

POSIX, 41-43

CALIBRE project, 175, 187

Campbell, B., 352

Campbell-Kelly, Martin, 298, 305

Campeau, Liz, 313

canned libraries, problems with, 24

capabilities, 67

CAPerl project, 67

Index

capital, raising, for dual licensing

businesses, 80-82

Capitalism, Socialism, and Democracy, 364

Cargill, Carl, 125

Carlson, Rob, 291

Carlson, Walter M., 299, 305

Carr, Nicholas, 101, 109

CAS.CADE (Computer Aided Software for

Computer Aided Design and

Engineering), 170

The Cathedral &&gt; the Bazaar, 125, 259

CBEMA (now NCITS), standards

organization, 122

cell phone manufacturers in China, taking

advantage of OSS, 208

Center for Development of Advanced

Computing (C-DAC), 193

CERT and security problems, 59

Chalkboard (Nupedia), 314

Chambe-Eng, Eirik, 170

CHATS (Composable High Assurance

Trusted Systems), 58

China

business models for OSS in, 202

cell phone manufacturers, taking

advantage of OSS, 208

future of software industry in, 198

institutions/industries adopting

Linux, 207

Linux distributors in, 200-202

open source software in, 197-210

security issues in, 199, 204

status of open source software in, 200-

202

SWOT (strengths, weaknesses,

opportunities, and threats) analysis

of OSS in, 203-209

what open source software means

in, 199

China Electronics Standardization Institute

(CESI), 207

China Standard Software Co., Ltd.

(CS2C), 201

"Chips
and

Dips" (Rob Malda s home

page), 374-376

Chism, Leon, 252

Christensen, Clayton, 92, 108, 123, 132-

135, 208, 258-260, 261

circumventing technological protection

measures prohibited by

DMCA, 154-156

Clark, D. D., 233

Clark, K., 344

Clarke, Judith, 246

CLI (Common Language Infrastructure), 53

click-wrap licenses, presented by Blizzard

games, 152

clinical trials, changes to, in the future, 295

The Cluetrain Manifesto, 130, 231, 263

CmdrTaco (see Malda, Rob)

CoCo Magazine, 138

Co-Create (Chinese Linux distributor), 201

Code and Other Laws of Cyberspace, 266

code reuse, productivity gain from, 22

code review as prerequisite to check-in, 9

code style

caring about, 24

reasons for consistency, 25

code, rewriting, 25

codebases

adding open source code to, 26

updating, 6

what makes them difficult, 23

code-level service business model, 118

cognitive linguistics, 242

Cohen, Pierre, 176

Cohen, Stanley, 282

Cohen-Boyer recombinant DNA cloning

patents, 283

CollabNet and Apache, 263

collaboration

emergent (see emergent collaboration)

network-enabled, 255, 260-265

collaborative communities

increase of, due to Internet, 361

open source software and, 371

collaborative development, 30

Columbine High School massacre, 383-386,

419-422

columns from Slashdot, 417-422

command-line interface, practicality of, 243

comment system on Slashdot site,

attacking, 388

commercial biotechnology, beginnings

of, 283

commercialization

of industries, 346

of Linux, 99

426 Index

commodification of software, 105

commoditization of software, 91-102, 248,

255-260

IT industry and, 93

commons, building/preserving, 353

communication, open
in innovation communities, 344

needed for emergent collaboration, 304

communications-centric architecture, 256

communities

collaboration practices within OSS, 371

cooperation among users, 343-345

open source complements and, 129-

132

participation by, in OSS

development, 127

vs. networks, 343

"communities of
practice", design principles

of, 365-367

Communities of Practice: Learning, Meaning,

and Identity, 365

community-based innovation, 350-352

importance of, in industry, 347-350

protecting users ability to tinker, 354

community-based model

three elements of, 340

vs. proprietary model, 339

compatibility certification, selling, 144

CompatibleLinux catalog, 179

competition

developing, in China, 205

dual licensing and, 77

OSS community development and, 131

complements, 128

open source, 129-132

open standards, 133-135

"computing grid" projects, 263

conformance requirements in standards and

specifications, 124

Congreso Hispalinux (Spain), 166

construction industry and software,

similarities between, 241

consulting vs. contracting, 144

consumer culture, deliberate creation

of, 352

consumer electronics manufacturers in

China, taking advantage of

OSS, 208

consumers and firms, 353

content scrambling system (CSS), 155

contract programming, 143

contributions, weighting, in problem-solving

community, 368

contributors vs. contributions,

evaluating, 369

controlling software destiny, 34

Cooper, Danese, xv

cooperation among users in innovation

communities, 343-345

Copernicus, 253

"copyleft" (not copyright) protection for

open source software, 106, 221

Copyright Arbitration Royalty Panel

(CARP), 241

copyright law

anticircumvention/antitools provisions

of DMCA, 154-156

changing, due to new technology, 151

expansion of, using technology

mandates, 158

fair use and, 354

historical perspective, 150

impact on open source, 149-159

lack of protection for functionality, 153

overasserting protection for code, 151

reverse engineering and, 152

secondary liability for

infringement, 153

software and, 73, 78

core-complement product network

view, 135

corporate culture, changing to adapt to open

source, 240

COSPA (Consortium for Open Source in the

Public Administration), 174

costs, managing, using public goods, 146

Cowboy Neal, 382

CPAN (Comprehensive Perl Archive

Network), 267

CreateFileQ, 51

Crocker, Lee Daniel, 317

Crossing the Chasm, 128

cross-platform component model

(XPCOM), 7

cross-platform XML-based UI language

(XUL), 7

Crynwr Packet Drivers, 137, 141-144

web site for, 148

cryptographic algorithms, 69

CSS (content scrambling system), 155

Index X 427

culture of secrecy in early computer

industry, 298

culture of wikis, 315

culture of work in India, challenging to OSS

adoption, 194

Cunningham, Ward, 315

Curry, Adam, 234

customer-centric solution networks, 132,

135

customizability of software

software

customizability of, 255, 265-270

Cutler, Dave, 46

CVE (Common Vulnerabilities and

Exposures) project, 70

CVS (concurrent versioning system), 28

"Daddy Pants" (Slashdot job

description), 392

DaimlerChrysler sued by SCO, 251

Danish strategies for libre software, 178

Darby, Newman, 344, 348

"The Darker Bioweapons Future", 292

DARPA (Defense Advanced Research

Projects Agency), 58

David, Paul A., 164

Davis, Michael, 310

de jure vs. de facto standards, 123

de Mello, Ricardo
"Gandhy",

226

de novo code, 291

Debian project, countries of origin of

developers, 164

decommoditization, 94, 101

of Linux platform, by Red Hat, 100

Decrem, Bart, 15

DELETE permission, 49

Dell Computer
in China, 205

making money from free software, 96

Dell, Michael, 254

DeMaagd, Kurt, 374

demand-side developments (Linux and open

source), 232

Demarco, Tom, 30

denial-of-service (DoS) attacks suffered by

Apache, 58, 62

Dent, Chris, 305

Department of Information Technology

(D-IT), 193

dependencies and software distribution, 31

design principles, 372

for referee function, 368-371

of "communities of
practice", 365-367

development community of libre

software, 163-165

development styles, changing from

proprietary to open source

models, 6

DG-INFO (Directorate General on

Information Society), 172

Diamond v. Chakrabarty, 283

DiBona, Chris, xv, 21-36, 355

Digital Computers Association (DCA), 299

Digital Millennium Copyright Act

(DMCA), 35, 240, 354

anticircumvention/antitools provisions

of, 154-156

digital rights management (DRM), 156

digital video discs and content scrambling

system, 155

dimension-of-merit innovations, 342

directive on software patents (EU), 181

Direto (email and collaboration tool), 226

discoveries of new uses for products, 341-

343

discussion forums, communicating many to

many, 373-396

disintermediation, 33, 394

disrupters of open source projects, dealing

with, 276

disruptive technology, treating OSS as, in

China, 207

disruptive vendors, 107-113

distributed computation, 263, 269

distributed development, 27-29

distribution strategies

freeware vs. open source, 109-113

vs. development strategies, 72

DKUUG (Danish Unix User Group), 167

DLLs and Win32 API, 47

DMCA (see Digital Millennium Copyright

Act)

DNA constructs, manipulating, 282

DNA, synthetic, 281

future trends for, 293

risk of biological hacking, 292

DNS (Domain Name System), 389

Dobsonjohn, 352

Doctorow, Cory, 236

428 xC Index

Document Mode of dialog on Wiki

pages, 315

Do-It-Yourself IT (DIY-IT) discussion, 251

Doom computer game and real-life

violence, 419-422

Dorf, M. C, 371

Dosi, G., 353

dot-corn investment bubble, 240

Dotzler, Asa, 12

Down and out in The Magic Kingdom, 236

downloads (free), helping vendors with

bottom line, 108

driver development kit (DDK) from

Novell, 142

DRM (digital rights management), 156

drug development
alternative routes to, 287-290

process of, 285-287

drugs with dangerous side effects,

recalling, 287

dual licensing, 71-90

attractive margins produced by, 79

choosing licenses, 82

competition and, 77

creating need/avoiding pain, 83

global development and, 87

intellectual property law and, 73-75

investment community and, 80-82

measuring the market, 84

open models and, 88

ownership and, 78

packet drivers, 144

piracy and, 85

practical considerations of, 79-87

reciprocity and, 76

social contract and, 85

trends and futures, 87

warranty and, 76

dual-license business model, 116

duct tape of the Internet (Perl), 268

-DUNICODE compiler tfdefine, 52

Dutch strategies for libre software, 178

Duval, Gael, 169

Dyroff, Roland, 169

E language and capabilities, 67

eBay, collaboration central to its

success, 264

Ecma International, 122

Economics in One Lesson, 147

economics of open source, 145147

Economy and Society, 364

education, libre software in, 183-185

Eich, Brendan, 5, 13

Eisenberg, R. S., 355

Emacs and Freemacs, 138

emergent collaboration, 297

encouraging, using neutral space, 300

facilitating, 304

PACT compiler project and, 298-300

World Trade Center recovery

effort, 301-303

encryption research threatened by

DMCA, 156-158

encyclopedias, online, 307-338

End-to-End Arguments in System Design, 233

end-user applications, coming from open
source development, 18

end-user license agreements (EULAs), 34

Endy, Drew, 291

Engelbart, Doug, xviii

English Cut weblog, 235

Enigmail plug-in, 69

Enterprise Linux (Red Hat), 99

entrepreneurs (small) and open

source, 137-147

equipment innovations by users/

manufacturers, 340-350

Ericsson (Sweden), 171

Erlang programming language, 171

EROS (Extremely Reliable Operating

System), 67

Essays in Sociology, 364

Ethernet cards, hiding differences between,

using packet drivers, 137, 141

Ethernet controllers, 142

Ettrich, Matthias, 163

EU directives with negative impact on libre

software, 181

EUCD (European Union Copyright

Directive), 182

EuroBSDCon, 166

European Commission and libre

software, 172-175

European libre software (see libre software

in Europe)

European Working Group on Libre

Software, 172

evaluating contributor vs. contribution, 369

Index X429

existing component suppliers, 349

existing manufacturers, 349

Exit, Voice, and Loyalty, 371

exploitable security problems, 58

fair use, protecting, 354

FCC and Broadcast Flag rule, 150, 158

fcntlQ, 41

FDNY (Fire Department of New York) and

9/1 1 recovery effort, 301-303

feed parser, available under Python Software

License, 23

Fehr, Thomas, 169

Feller, Joseph, 185

Felten, Ed, 156

Ferris,!., 351

file locking using POSIX, 40-43

FILE_EXECUTE permission, 50

_FILE_OFFSET_BITS macro, 44

FILE_READ_ATTRIBUTES permission, 49

FILE_READ_DATA permission, 49

FILE_READ_EA permission, 49

FILE_SHARE_DELETE constant, 51

FILE_SHARE_NONE constant, 51

FILE_SHARE_READ constant, 51

FILE_SHARE_WRITE constant, 51

FILE_WRITE_DATA permission, 49

FILE_WRITE_EA permission, 49

Finnish strategies for libre software, 177

FIPS (Federal Information Processing

Standards), 124

Firefox, Mozilla, 7, 15-18

future of, 18

firms

consumers and, 353

encouraging innovation by user

communities, 356

"first implementation past the
post"

standardization, 40-43

first-of-type innovations developed by

users, 348

Fishman, Charles, 113

Fitzgerald, Brian, 185

Flake, Halvar, 65

floppy disks, mailing, 139

FLOSS (free, libre, open source

software), 174

study of European development

community, 163, 185

FLOSS-POLS (Free/Libre/Open Source

Software

Policy Support), 175

FLOSS-US study, 164

FOSDEM (Free Open Source Developers

Meeting), 166

FOSS (Free and Open Source

Software), 211-228

attitudes towards Java, 222-224

future collaborations with Java, 227

implementations based on open
standards to promote software

livre, 217-219

interested in protecting Linux from

attacks, 280

learning to coexist with Java, 224227

Microsoft vs. the movement, in

Brazil, 216

using Groklaw against SCO case, 275

working for open source, in India, 189

France Telecom R&D, 171

Franke, N., 345

Franz, K, 350

Free and Open Source Software (see FOSS)

"Free as in freedom", 211

"Free But Shackled The Java Trap" by
Richard Stallman, 222

free downloads, helping vendors with

bottom line, 108

free Java implementations

recommended by Stallman, 222

tools/products used in Brazil, 225

free online encyclopedias, 307-338

free software, 211-228

copyright law and its impact on, 149-

159

history of, 26 1

impact on proprietary development, 26

making money from, 96

open source breaking off from, 238

security problems with, 57

vs. licensed software, 27

(see also libre software in Europe)

Free Software Business (FSB) mailing

list, 145

Free Software Foundation (FSF), 237

assigning rights for software

contributions, 74

browser wars and, 417^19

Index

"Free Software Research and Application

Development", 200

Freemacs, 137

business and, 139-141

open source and, 138

web site for, 148

freeware vs. open source as distribution

strategies, 109-113

Freiberger, P., 350

French strategies for libre software, 175

Friedl, Jeffrey, 268

Friedman, David D., 147

"Fritz
chip",

158

Frye, Dan, 240

FSB (Free Software Business) mailing

list, 145

FSF France, 167

FSFE (Free Software Foundation

Europe), 167

FTP Software, 142

FUD (Fear, Uncertainty, and Doubt) effects

of SCO litigation, 251

functionally novel innovations, 342

future of

libre software in Europe, 187

open source and security, 66-69

open source biology, 293-296

OSS in India, 196

Russ Nelson, 147

software industry in China, 198

software, after dual licensing, 89

Gabriel, Richard, 242

Gapingvoid.com, 235

Gardner, Dana, 111

Garrity, Steve, 16

Gates, Bill, 216

Gelernter, D., 345

gene-based medicine (future trend), 295

Genentech, incorporated to sell gene-based

medicines, 283

genetic engineering

early days of, 282

genomic programming, 290-292

risk of biological hacking, 292-293

synthetic biology and, 290

genetic technology, public mistrust of, 281,

295

Geoservices system used by Rijkswaterstaat

(Netherlands), 180

German strategies for libre software, 177

gettextQ interfaces, 53

Ghosh, Rishab, 163, 185

gid_t type in POSIX, 48

Gil, Gilberto (software livre movement

supporter), 215

gildot news site, 166

Glaser, Rob, 240, 248

Glassie, Henry, 243

global development and dual licensing, 87

Glott, Ruediger, 163

Gluecode, 108

using managed source model, 118

GNU autoconf system, 39

GNU C compiler (gcc), 262

GNU FDL (Free Documentation

License), 323

GNU General Public License (GPL), 83, 126,

402-409

"copyleft" (not copyright) protection for

open source software, 106

Linux and, 95

GNU Manifesto, 241

Gnuheter news site, 166

gnuLinEX distribution, 184

gnuLinEx distribution for implementing IT

literacy in Spain, 179

GnuPG project, 69

Gobbles (hacker or group of hackers), 58

Gold Revolution in India, 189-196

Gonzalez-Barahona, Jesus M., xvii, 161-188

Goodger, Ben, 15

Google

PageRank system and, 236, 265

Wikipedia and the Google effect, 324

governance challenge to Wikipedia, 327-

330

governance, patterns of, in open

source, 361-372

government regulations vs. voluntary work

of organizations, 123

granularity of knowledge and referee

function, 370

gratis vs. livre (terms meaning free), 212

Gray Revolution, 189

Green Revolution, 189

Index 431

groceries market, Wal-Mart vs. Whole

Foods, 104, 113

Groklaw, 273, 274-280

Grokster and Streamcast, lawsuit

against, 153

group communication (many to

many), 373-396

Griinbacher, Andreas, 45

GUADEC (GNOME User and Developer

European Conference), 166

Guthrie, Scott, 263

H
hacker culture, 244

importance of reputation in, 235-236

new world of open source/free software

and, 239

hacking, biological, risk of, 292-293

Hall, B. H., 354

Hall, John "Maddog", 239

hardware industry, commoditization of, 93

Harhoff, D., 345

Haring, K., 345

Hazlitt, Henry, 147

Hecker, Frank, 111

Heise Online news site, 166

Heller, M. A., 355

HenkelJ., 345

Hershey, Milton, 109

Hessel, Andrew, xviii, 281-296

Hidden Order, 147

high-performance windsurfing, origins

of, 341

Hirschman, Albert, 371

Hispalinux (Spain), 167

Hoffman, Chris, 13

Holden, Kenneth, 302

Hollings, Senator Ernest "Fritz", 158

Hollywood, using but working against

technology, 250

Honscheid. Jurgen, 340

Horgan, Mike, 340

"How the Web was almost won" by Tim

O Reilly, 256

Howe, S., 348

HTML, making the Web accessible to

ordinary users, 267

Huawei Technologies, 198

Hughes, Phil, 239

HughTrain weblog, 235

Human Action, 148

Human Growth Hormone, brought to

market by Genentech, 283

human insulin gene, cloned/expressed by

Genentech, 283

Hunter, Jason, 219

Hust, Christoph, 313

I

IBM

in China, 206

introduction of PC (personal

computer), 93

mixing platforms/silos with free/open

source software, 245

open source commoditization

strategy, 248

participation in OSS development, 130

standardized architecture of PC caused

paradigm shift, 254

IBM vs. SCO case and Groklaw, 273-280

iconvQ, 53

ICT (Information and Communication

Technology) industry in

China, 197

ID Pro AG (Germany), 168

IDA (disassembler), 65

IDA (Interchange of Data between

Administrations) program, 173

IDA Open Source Observatory, 174

IEEE, standards arm of, 122

IETF (Internet standards process), 266

Ifcher, Ruth, 317

IM (Instant Messaging), 30, 232

In the Beginning Was the Command Line, 243

India

localization of software in, 190, 193

open source software, 189-196

challenges in local adoption of, 192-

195

educational quality and, 195

government and, 191

issues for business, 190

Indian Patents Act, amended by

government, 195

IndLinux project (desktop localization), 193

information as a commodity, 236

information asymmetry between users and

manufacturers, 342

Information Society Thematic Portal, 174

457 *
43Z * Index

informational content of drugs,

changing, 295

"infoware" (proprietary applications), 258

Infosys, building Linux migration

practice, 191

infringement of copyright, secondary

liability for, 153

innovation communities, cooperation

among users, 343-345

innovative discoveries through use, 341-343

The Innovator s Dilemma, 92, 208, 258

The Innovator s Solution, 133,258
INR1A (France), 171

installing software automatically, 31

Instant Messaging (IM), 30, 232

insulin gene, cloned/expressed by

Genentech, 283

"Intel Inside", 254, 259

intellectual commons, building/

preserving, 353

intellectual property, 34

building/preserving intellectual

commons, 354-355

educating Chinese enterprises about

importance of, 198

genetic engineering, early days of,

and, 282

growing challenges for

biotechnology, 285-287

legislation to streamline transfer of, 284

managing biotech IP, 284

new type of protection for open source

software, 106

open source biology and, 281

primer on, 73-75

standards and, 124

tools of, 129

unconstrained software patents not

allowed in India, 195

The Intelligent Network, 233

intended vs. accidental discoveries of uses

for products, 341-343

internationalization in application

development, 52

Internet

building operating system for, 270

creating collaborative

communities, 361

lowering costs of doing scientific

research, 288

role of open source in development

of, 262

Internet radio and the DMCA, 241

Internet Relay Chat (IRC), 30

Internet, open source role in development

of, 260-262

interoperability, reference document

on, 173

investments in dual licensing

businesses, 80-82

IP (see intellectual property)

iPodder script, 234

IRC (Internet Relay Chat), 373, 390

usefulness of, on September 1 1
, 389-

395

iron industry firms working together, 351

IRPFJava (tax report application), 226

Isenberg, David, 233

issue-tracking system for Mozilla, 6

1ST (Information Society Technologies)

program, 174

"IT Doesn t Matter" by Nicholas Carr, 101

IT Garage (online magazine), 234

IT industry and commoditization of

software, 93

Italian strategies for libre software, 177

ITEA Report on Open Source Software, 168

J

JanaBhaaratii project (desktop

localization), 193

Java technology

FOSS community attitude

towards, 222-224

Java-based tools used in Brazil, 226

providing users with choices, 220-222

software livre and

how Java can help, 219

learning to coexist together, 224-

227

need for future collaborations, 227

JBoss, 108

professional open source business

model, 115

JCP (Java Community Process), 219

Jefferson, Richard, 289

Jeppeson, L. B., 356

Index ;*433

Johansen, Jon, 155

Jones, Pamela, xviii, 273-280

JonKatz (see Katz, Jon)

Joy, Bill, 261

Junta de Andalucia, instigating libre software

law, 180

Kalam, Dr. APJ, 196

Kaleidescape, 155

Kapor, Mitch, 13, 266

karma (value of users in Slashdot

system), 381

Karn, Phil, 142

Katz, Jon, 377, 378, 384-386, 419-422

Katz, R., 356

Kay, Alan, 271

KempJ. Hoffmann, 324, 333

Kim, Eugene, xviii, 297-305

Kim, H. Jessica, 305

Kinkel, Kipland, 420

knowledge management and

distribution, 365-367

Koch, Stefan, 185

Kolab Groupware Project, 179

Kovitz, Ben, 315

Krieger, Bernhard, 163

Kuhn, Thomas, 253, 271

Kurzweil, Ray, 255

Lages, Ronaldo, 214

Lakoff, George, 242

LAMP (Linux, Apache, MySQL, Perl (or

PHP)), 61

Langewiesche, William, 301-303, 305

LankfordJ., 351

_LARGEFILE_SOURCE macro, 44

_LARGEFILE64_SOURCE macro, 44

Larsson, Allan, 170

Lasica, J. D., xxi

Laurie, Ben, xviii, 57-70

The Law, 148

law of conservation of modularity

(Christensen), 261

"Layers
of Time" model of civilization, 237

vs. Burton Matrix, 249

layout engine, rewriting, 7

Le Deaut, Jean-Yves, 176

Le Marois, Jacques, 169

Lefkowitz, ROml, 110, 252

legal issues and libre software, 181-183

Legal Links page on Groklaw web site, 275

legal research, using open source methods

for, 273-280

legislation created to streamline transfer of

IP, 284

Lerdorf, Rasmus, 163

Lesser General Public License (LGPL), 115

Lessig, Larry, xvii, 266, 354

Levine, Rick, 231

Lewis, Jamie, 246

libraries, created or derived, 26

libre software in Europe, 161-188

actions by European Commission, 172-

175

development community, 163-165

education and, 183-185

EU directives with negative impact

on, 181

historical background of, 162

in public administrations, 172-181

in the private sector, 167-172

legal issues, 181-183

market share of, 168

national initiatives and, 175-179

organization of community, 165-167

other public sector initiatives, 179-181

research on, 185-187

validity of software licenses, 182

licensed software vs. free software, 27

licenses, 126

academic, 75

BSD License, 401

choosing, in dual-licensing

businesses, 82

GNU General Public License

(GPL), 402^09
intellectual property, 74

libre software licenses in Europe, 182

open source vs. proprietary, 77

reciprocal, 75, 83

referenced open source licenses, 401-

411

Sleepycat License, 409-411

viral, 126

licensing, dual (see dual licensing)

lifestyle firms, 347

434^ Index

Linux

business models for

consequences of future

directions, 100-102

early years, 97-99

Chinese distributors of, 200-202

commercialization of, at a

crossroads, 99

proprietary model of, 100

response to open systems failure, 95

standardization of, in China, 207

ways for distribution vendors to be

competitive, 260

Linux distribution, 98

Linux Forum (Denmark), 166

Linux Journal, 231

Linux User Groups (LUGs)

in China, 200

in Europe, 166

Linux.pl news site, 166

LinuxFr news site, 166

LinuxTag meeting, 166

Linuxwochen (Austria), 166

LIRICS (Long Island Regional Instructional

Computer System), 138

Lister, Timothy, 30

Littleton, Colorado school massacre, 383-

386, 419-422

Liu, Louisa, xix, 197-210

Living on the Fault Line, 133

livre vs. gratis (terms meaning free), 212

local vulnerabilities, 62

localization in application development, 52

localization of software in India, 190, 193

Locke, Chris, 231

locking files using POSIX, 40-43

logfiles, handled by Slashdot, 388

The Long Now, 237

Longhorn Windows client, 54

Lord, Timothy, 391

"Low Road" buildings, 244

LSM/RMLL (Libre Software Meeting/
Rencontres Mondiales du Logiciel

Libre), 166

LUGs (Linux User Groups)
in China, 200

in Europe, 166

M
MacLeod, Hugh, 235

magazine architecture vs. vernacular

architecture, 243

"The Magical Incubator" (Building 20), 244

Mahon, Thomas, 235

major improvement innovations developed

by users and manufacturers, 349

Malda, Rob, 374-379, 383, 385, 391-394,

396, 417-419

managed code and Win32 .NET

environment, 53

managed source business model, 118

Mandrakelinux, 169

MandrakeSoft, 167, 169

distributing Linux in China, 201

Mandriva, 169

Manske, Magnus, 314, 317, 332

Mantel, Hubert, 169

manufacturers

developing innovations in sports

equipment, 340-350

major improvement innovations

developed by, 349

organized to produce for industry, 349

"many eyes" theory, 60

MapQuest/Maps.yahoo.com/Maps.msn.

com, 265

Mapstone, Bobbi, 299, 305

margins produced by dual-licensing

businesses, 79

markets, measuring, 84

Mastering Regular Expressions, 268

Matra Datavision, 170

Maurer, Stephen, 288

McBride, Darl, 276

McGregor, Scott, 15

McKusick, Kirk, 42

McVoy, Larry, 29

Mechanical Turk hoax, 269

Melahn, Wesley S., 299, 305

merger & acquisition (M&A) activity for

biotech and pharmaceutical

industries, 286

metamoderation, used by Slashdot, 389

meta-wiki (Wikipedia), 325

MGM v. Grokster lawsuit, 153

Index

Microsoft

antipiracy campaign launched, 214

gaining freedom from lock-in to, 224

origin of ASP.NET, 263

strong presence in Brazil, 213

success of, due to standardized

architecture of IBM PC, 254

trying to succeed in the Internet

world, 232

vs. FOSS movement, 216

migration guidelines for libre software, 173

milestone releases, having control of, 10

Miller, Mark, 67

Miller, Robin, 391

Milovich, Dimitrije, 346

mistrust of genetic technology, 281, 295

mixed source business model, 114

moderated discussions, problems with, 379

moderating the moderators on Slashdot

site, 389

moderation level, setting, by Slashdot

users, 381

modern biotechnology, rise of, 282-284

modular design and referee function, 370

MoLOS group (Master on Libre, Open
Source Software), 185

money, how to earn, from selling free

software, 96

Mono project, 53, 55

Moore, Geoffrey, 128, 133

Moore, Phil, 251

"More Stories from the Hellmouth"

(Slashdot column), 385

Morfeo Project, 171

"most popular"
section on Amazon.com web

pages, 264

Mozilla 1.0 release, 12

Mozilla Application Suite, 15

Mozilla Europe affiliate, 17

Mozilla Japan affiliate, 17

Mozilla organization

founding of, 4-12

future of, 18

young adulthood of, 12-18

Mozilla project, 3-19

security and, 69

Mozilla Public License, 3, 13

mozilla.org, 5

controlling milestone releases, 11

mozillaZine, 12

MS-DOS text editor (Freemacs), 137-139

MTA (mail transfer agent), 144

multibyte character sets, 53

multinational vendors (MNVs) in

China, 205

Murdock, Ian, xix, 91-102, 260

MySQL AB, 168, 170

The Mythical Man-Month, 32, 363

N

Napster, showing how to build large

databases, 268

national initiatives and libre software, 175-

179

National Institutes of Health (NIH), creation

of, 282

National Science Foundation (NSF), creation

of, 282

native character set for system calls, Unicode

as, 52

"The Natural History of Software

Platforms", 257

NEA principles, 233

Nelson, Chris, 12

Nelson, R. R., 353

Nelson, Russ, xix, 137-147

Netherlands strategies for libre

software, 178

Netscape Communications Corporation, 4

"network services model", formalized by the

Burton Group, 246

network-enabled collaboration, 255, 260-

265

networks vs. communities, 343

"Neutral Point of View" (NPOV) policy

page, 321

neutrality policy

for Nupedia articles, 313

for Wikipedia articles, 320-323

news sites related to libre software, 165

NIH ("not invented here") syndrome, 22

Nimmer, D., 354

NISCC (National Infrastructure Security Co

ordination Centre), 64

Nobel, D., 353

Nokia (Finland), 171

NOKOS (Nokia Open Source License), 171

Nonaka, I., 342

436^ Index

nonbias policy

for Nupedia articles, 313

for Wikipedia articles, 320-323

Nord, Haavard, 170

North American Aviation, 299

Norwegian strategies for libre software, 179

"not invented here" (NIH) syndrome, 22

Novell network clients and packet

drivers, 141

NTDLL.DLL library, 47

Nupedia, 307-338

final attempts to save, 333

neutrality policy for articles, 313

recent press reports about, 309-311

Nupedia Advisory Board, 309-311, 313, 316

Nupedia Chalkboard, 314

NUUG (Norwegian Unix User Group), 166

O Mahony, S., 345

O Reilly Open Source Convention, 251

O Reilly, Tim, xix, 117, 236, 248

ObjectWeb (France), 171

Ockman, Sam, xv, 355

off_t type, 43

OGC (Office of Government

Commerce), 176

Ollydbg (debugger), 65

Olsen, Ken, 254

Olson, Michael, xix, 71-90

OneWorld Health, 289

onion routing, 70

online group communication (many to

many), 373-396

online updating/installing software, 31

OOoCOn (OpenOffice.org

Conference), 166

Oostendorp, Nate, 374

Open CASCADE S.A., 170

open code and knowledge reuse, 22

Open Forum Europe, 167

open hardware platform, 94

open models and dual licensing, 88

open product design/open communication

in innovation communities, 344

Open Programming Language (OPL), 171

"open range" platform, 356

open source

breaking off from free software, 238

business models, 113-118

companies involved in projects, 233

complements, 129-132

copyright law and its impact on, 149-

159

dealing with deliberate disrupters, 276

economics of, 145147

expanded copyright control interferes

with, 151

extending principles beyond software

development, 273-280

Freemacs and, 138

game server created, using reverse

engineering, 152

paradigm shift, 253-271

projects, building, 8

security (see entries under security)

small entrepreneurs and, 137-147

vs. freeware as distribution

strategies, 109-113

Open Source Academy, 177

Open Source Applications Foundation, 13

open source biology (OSB) (see biology,

open source)

Open Source Definition, 270, 399-400

Open Source Development Network

(OSDN), 391

open source development, disciplined

methodology for, 8

Open Source Initiative (OSI), 3, 125, 238

BSD License, 401

GNU General Public License

(GPL), 402^09

Open Source Definition, 399-400

Sleepycat License, 409-411

open source software

in India, 189-196

challenges in local adoption of, 192-

195

educational quality and, 195

government and, 191

issues for business, 190

open source software development, 21-36,

125-127

in China, 197-210

commoditization of software and, 91-

102

community-based model, 340

dependencies and, 31

distribution vs. development, 72

Index X437

open source software development (cont d)

how it changed proprietary software

development, 26

how proprietary software development

changed it, 32-35

in China

business models, 202

status of, 200-202

SWOT analysis of, 203-209

the road ahead, 209

what it means, 199

online updating/installation, 31

paradigm shift occurring now, 255

social problems, solving, using

governance principles of, 362-365

vs. proprietary, 21-25, 246

licensing issues, 75

Open Source Software Resource Center

(OSSRC), 195

Open Source Technology Group

(OSTG), 31, 391

Open Sources, ix, 3, 266, 395

open standards, 122-125

complements, 133135

implemented as open source to

promote software livre, 217-219

shared Ethernet drivers and, 142

open systems

failure of, 94

vs. open standards, 125

Open Systems Standardization: A Business

Approach, 125

OpenNT product, 55

OpenPGP standard under GPL, 69

OpenSSH hole security problem, 57

OpenSSL
buffer overflow problems, 57

library, 69

operating system for Internet, building, 270

opportunism in work culture of India, 194

organization rigidity in work culture of

India, 194

Original Design Manufacturing (ODM), 209

orkut, learning from Google, 265

OSI (see Open Source Initiative)

OSOSS program, 178

other people s code

learning from, 25

problems with using, 22, 24

outsourcing market in India and OSS, 190

ownership
dual licensing and, 78

of intellectual property, 73

package management systems, 68

packagers and security vulnerabilities, 63

Packet Drivers (Crynwr Software), 137,

141-144

web site for, 148

PACT (Project for the Advancement of

Coding Techniques) compiler

project, 298-300

PageRank system, 236, 265

paradigm shifts, 253

biology facing, 281

lessons from previous, 270

occurring now for free/open source

developers, 255

standardized architecture of IBM

PC, 254

Parr, R. L, 354

participatory architecture, 266-268

patch program, introduced by Larry

Wall, 262

patent law

concerns involving genetic

engineering, 283

fair use and community-based

innovation, 354

making patents available on RAND
terms to standards bodies, 123

unconstrained software patents not

allowed in India, 195

patents vs. standards, 124

pathconfQ, 39

Patterns of Software, 242

Paul, Christian, 176

PBX (private branch exchange)

telephones, xi

_PC_NAME_MAX constant, 40

_PC_PATH_MAX constant, 40

PCs replacing workstations, 94, 134

Pedro, Simao, 215

Peopleware, 30

Perens, Bruce, 239

Perl (duct tape of the Internet), 268

permissions for file objects in Win32, 49

permissive licenses, 126

.,o *
438 * Index

personal computer innovations made by the

community, 350

"personal computing" products, appearance

of, 93

physical vs. virtual products, building

businesses around, 356

physical vs. virtual world, 233

Pilgrim, Mark, 24

Pinheiro, Walter, 215

Pink, Daniel, 310

piracy

campaign against, launched by

Microsoft, 214

dual licensing and, 85

limiting with DMCA, 241

rampant, in India, 193

targeting, in China, 198, 207

platform and silo systems, 232

construction industry and, 241

need to base them on free/open source

infrastructure, 244

platforms, two approaches to, 356

PLUG (Polish Linux User Group), 167

podcasting, 234

not yet affected by DMCA, 241

Polanyi, M., 342

Polese, Kim, ix-xii, 245

politics and business, 71

polymerase chain reaction (PCR), 284

Poppen, Sherman, 348

portalizing Slashdot sites, 380

Portuguese words for
"free",

212

POSIX standard, 38-45

adapting to change from 32 -bit to 64-

bit computing, 43-44

broken locking mechanism in, 40-43

future of, 44

official documents from IEEE, 38

Single Unix Specification (SUS) and, 44

vs. Win32, choosing, 54

Windows NT and, 47

posting anonymously on Slashdot, 380, 387

press reports about Nupedia/

Wikipedia, 309-311

presynthesized DNA, 291

prettifying code, 24

price differentiation concept, 146

privacy concerns with open source legal

projects, 278

private branch exchange (PBX)

telephones, xi

private sector, libre software in, 167-172

professional open source business

model, 115

Progeny, 101

Project for the Advancement of Coding

Techniques (PACT) compiler

project, 298-300

project scaling, 32

proprietary development

changed by open source ideals, 26

proprietary Linux, 100

proprietary model vs. community-based

model, 339

proprietary packet drivers, selling, 144

proprietary software development, 21-36

becoming standardized/

commodified, 257

controlling software, 34

dependencies and, 31

how it changed open source, 32-35

how open source changed it, 26

online updating/installation, 31

vs. open source, 21-25, 246

licensing issues, 75

protection for code, overasserting, with

copyright expansion, 151

public administrations, libre software

in, 172-181

public communications in open source

projects, 6

public goods, managing costs by using, 146

public mistrust of genetic technology, 281,

295

public sector initiatives and libre

software, 179-181

public vs. private information, in legal

research projects, 278

Pubmed (journal database service), 285

punch cards, 27

Q
QA (quality assurance) community,

developedbymozilla.org, 11

QA and testing of maturing projects, 32

qmail, 137

web site for, 148

qmail (mail transfer agent), 144

Qt (component for KDE), 170

quality assurance (QA) community,

developedbymozilla.org, 11

Index **439

R&D processes and drug development, 285

Radio Userland, 274

Rai, Arti, 288

RAND (reasonable and non-discriminatory)

terms

Java technology and, 220

making patents available on, 123

Rangaswami , J . P .
,
252

Raymond, Eric S., be, 60, 125, 238, 256,

259, 270, 366, 395

READ_CONTROL permission, 49

Real Programmers, ix

Really Simple Syndication (RSS), 234

recalling drugs with dangerous side

effects, 287

reciprocal licenses, 75, 83

reciprocity and dual licensing, 76

recombinant DNA technology, 282

Recording Industry Association of America

(RIAA)

challenging conference paper, 157

recovery effort at World Trade Center, 301-

303

Red Flag (Chinese Linux distributor), 200

Red Hat, 99

consequences of new business

model, 100-102

distributing Linux in China, 201-203

Enterprise Linux, 99

Reed, D. P., 233

refactoring code, 24

referee function, design principles for, 368-

371

reframing and origins of innovation, 352

The Register news site, 165

regulatory vs. voluntary standards, 123

Reimer, Neils, 282

Reingold, Howard, 392

Release Candidates, 12

repository of refereed information, 369

repository of source code

controlling, 9

having write access to, 10

reputation property vs. traditional

intellectual property, 106

reputation, importance of, in hacker

culture, 145, 235-236

research into encryption, threatened by

DMCA, 156-158

research on libre software in Europe, 185-

187

research process vs. development

process, 285

reverse engineering and copyright law, 152

rewriting code, 25

RFCs (Requests for Comments), 266

Richey, Jason, 314

Richie, Dennis, 38

rigid hierarchy in work culture of India, 194

The Rise of the Stupid Network, 233

risk assessment ability, 65

Robles, Gregorio, xx, 161-188

Rooney, Paula, 121

RSS (Really Simple Syndication), 234

Ruffolo, Robert Jr., 286

Sabel, Charles, 371

Sali,Andrej, 288

SALOME platform, 170

SaltzerJ. H., 233

Samba, 37-55

Samuelson, P., 354

Sanger, Larry, xx, 307-338

SAP

in China, 206

participating in OSS development, 131

Saville Row tailor, weblog of, 235

Saxena, Sunil, xxi, 197-210

scaling issues for Slashdot, 388

scaling of projects, 32

Scheider, Hendrik, 163

Schumpeter, E. F., 257

Schumpeter, Joseph, 353, 364

SCO and the FUD (Fear, Uncertainty, and

Doubt) effects of its litigation, 251

SCO litigation and Groklaw, 273-280

search algorithms, choosing, 367

Searls, Doc, xxi, 231-252

secondary liability for copyright

infringement, 153

secrecy necessary for legal research, 278

Secure Digital Music Initiative (SDMI), 156

security

designing within referee systems, 371

future of, 66-69

440 Index

how proprietary software changed open

source, 32

issues in China, 199, 204

open source and, 57-70

open vs. closed source, 61-65

risk assessment ability and, 65

vulnerabilities vs. bugs, 60

Win32 standard and, 48

Security Descriptors in Win32, 48

Seltzer, Wendy, xxi, 149-159

September 1 1 and Slashdot, 389-395

services business model, 115

companies positioning towards, in

China, 202

Services for Unix (SFU) product, 55

SETl@home project, 263

Seti@home project, 269

severity of vulnerabilities, classifying, 62

Shah, Ajay Dr., 191

Shah, Dr. Sonali K., xxi

Shah, SonaliK., 339-360

Shapiro, C, 354

Shapiro, Jon, 67

share modes on open files (Win32), 51

ShareMode parameter, 51

sharing ideas within innovation

communities, 345

Sharma, Alolita, xxi, 189-196

Shell, Tim, 310, 312, 317

Shirky, Clay, 268

SID (security identifier) in Win32, 48

side effects of drugs, prompting drug

recalls, 287

Sifter-L mailing list, 333

SIGOSSEE (Special Interest Group on Open
Source Software for Education in

Europe), 184

"Simple
Solutions" (Slashdot column), 377,

417-419

SIMTEL-20.ARPA, Freemacs first distributed

from, 139

Single Unix Specification (SUS), 44

skateboarding industry

commercialization of, 346-347

developing equipment innovations

in, 340

importance of community-based

innovation, 347-350

Sklyarov, Dmitry, 35

SkoleLinux project (Norway), 183

Slackware Linux, 169

slashboxes, 380

Slashdot, 373-396

anonymous postings, 380, 387

attacks made on, 388

becoming increasingly

sophisticated, 387-389

Columbine High School

massacre, 383-386

early days of, 375

karma system, 381

logfiles, handling, 388

moderation introduced to, 380

origin of name, 375

origins of, 374

scaling issues for, 388

September 1 1 and, 389-395

user accounts on, 380

Slashdot columns, 417-422

Slashdot Effect, 326, 377

Slashnet IRC network, 391-394

Sleepycat License, 409411
SLX Debian Lab Foundation, 184

small entrepreneurs and open source, 137-

147

small to medium-size enterprise (SME)

market and open source, 108

Smith, R. Blair, 298-301

Smith, Roland, 252

snowboarding industry

commercialization of, 346-347

developing equipment innovations

in, 340

importance of community-based

innovation, 347-350

Snurfer (early snowboard), 348

social contract and open source projects, 85

social engineering used by Slashdot, 380,

382

social problems, solving, using governance

principles of OSS, 362-365, 372

software

brief history of, 104

commodification of, 105

commoditization of, 91-102, 255-260

future of, after dual licensing, 89

similarities between construction

industry and, 241

Index 5S441

software distribution, 31

software livre, 212-228

developing the Brazilian-organized

movement, 214

Java technology and

FOSS community attitude

towards, 222-224

how Java can help, 219

learning to coexist together, 224-

227

need for future collaborations, 227

promoted by open standards

implemented as open source, 217-

219

software patents, EU directive on, 181

software source code exchange culture, 261

software technology parks of India

(STPIs), 192

Softway Systems, 55

Solutions Linux (France), 166

Sony v. Connectix case, 354

Soujava Java Users Group, 228

source code exchange culture, 261

source code repository

controlling, 9

having write access to, 10

source of code (reputation property) vs.

source code (intellectual

property), 106

SourceCast platform (CollabNet), 263

SourceForge.net, 30

SourceSafe, 29

Souza, Bruno, xxii, 211-228

Spanish strategies for libre software, 178

Spanish Wikipedia, 331

Specifix, 108

using code-level service model, 118

spies, dealing with, in open source

projects, 277

sports equipment innovations by users/

manufacturers, 340-350

Spread Firefox campaign, 16

SSLUG (Skane Sjaelland Linux User

Group), 167

Stallman, Richard, 38, 138, 222, 237, 261,

262

standardization

as natural market force, 92

of OSS in China, 207

of technology, signals for, 133

standards

choosing, 54

open, 122-125

complements, 133135

POSIX, 38-45

vs. patents, 124

Win32, 46-54

Stanley, Larry, 340, 343

Statskontoret (Swedish Agency for Public

Management), 178

status quo bias vs. change bias, 370

Steinbild, Burchard, 169

stemmer, available under Berkeley Software

License, 23

Stephenson, Neal, 243

Stevens, B., 348

Stone, Brad, 309

Stone, Mark, xv, 305, 373-396

Streamcast and Grokster, lawsuit

against, 153

Strong, Jack, 299

The Structure of Scientific Revolutions, 253

Stutz, Dave, 256-258, 270

submit.pl (Slashdot submissions bin), 376

Subversion (SVN), 28

The Success of Open Source, 368

Sullivan, P. H., 354

Sun Microsystems

basing workstations on Unix operating

system, 93

in China, 206

participation in OSS development, 131

"sunk costs", 146

"super-review"
of code, 9

support, lack of, for OSS in India, 192

SUS (Single Unix Specification), 44

SuSE, 167, 169

distributing Linux in China, 201

Svenska Linuxforeningen news site, 166

Swaine, M., 350

Swanson, Robert, 283

Swedish strategies for libre software, 178

SWOT (strengths, weaknesses,

opportunities, and threats) analysis

of OSS in China, 203-209

Symbian OS, 171

SYNCHRONIZE permission, 50

syndication format for weblogs (RSS), 234

synthetic biology and genomic

programming, 290-292

442 Index

synthetic DNA, 281

future trends for, 293

risk of biological hacking, 292

system calls, 26

system failures, transparent, 370

Takeuchi, H., 342

Tapscott, Don, 421

TCHAR abstract type, 53

"technological protection measures", 150

circumvention of prohibited by

DMCA, 154

technology mandates, 158

technology transfer office at Stanford, 283

Technorati cosmos (collection of current

inbound links), 235

Telecentros project, 215

Telefonica Investigacion y Desarrollo

(TID), 171

testing and QA of maturing projects, 32

Thompson, Ken, 38

Thread Mode of dialog on Wiki pages, 315

threading, POSIX standard not future

proofed against, 41

threat models, 66

Thunderbird, Mozilla, 7, 15-18

Tilly, Ben, 111

"time to fix" security vulnerabilities, 62-64

timing issues for information referees, 370

Tinkler, Michael, 324, 333

top-level directories in Unix filesystem, 243

TOR (the onion router), 70

Torvalds, Linus, 22, 163, 239, 266, 345

transaction costs, 146

Trench Coat Mafia, 419

trends and futures of dual licensing, 87

Tretkowski, Ingo, 163

Tridgell, Andrew, 42, 152

trolls (inflammatory posters), 331-333

governance problem and, 328

meta-wiki infested by, 325

Slashdot and, 382, 388

trolls, dealing with, in open source

projects, 276

Trolltech AS, 168, 170

TurboLinux China (TLC), 201

tutorial on how to do business, 143

U
uid_t type in POSIX, 48

Unicode standard, early adoption of, by

Win32, 52

United Kingdom strategies for libre

software, 176

universities

effect of intellectual property practices

on R&D, 286

rise of modern biotechnology

and, 282-284

universities and biotech firms, alliances

between, 284

University of Trolldom and

Astroturfing, 276

University Office of Technology Licensing at

Stanford, 283

Unix operating system

early days of free software, 261

replaced by Windows in the

marketplace, 95, 134

Sun workstations and, 93

top-level directories in filesystem, 243

The Unix Programming Environment, 256

Unix wars, 38

updating software online, 31

Usemod.com (wiki about wikis), 315

Usenet, role in development of Internet, 262

user accounts on Slashdot, 380

user firms working together, 351

user innovation process in industry, 340

user-innovators, 345-347

low visibility outside own

community, 352

user-manufacturers, 349

users

bringing innovative ideas to firms, 356

developing innovations in sports

equipment, 340-350

first-of-type innovations developed

by, 348

in innovation communities,

cooperation among, 343-345

major improvement innovations

developed by, 349

staying in touch with, 140

USPTO (U.S. Patent and Trademark

Office), 283

UUCP (Unix-Unix Copy Protocol), 262

UUnet (first commercial ISP), 262

Index X443

VA Linux Systems, 391

van der Hoek, Andre, 185

van Rossum, Guido, 163

vendor-centric product networks, 132, 135

vendors

benefits of open source to, 105

disruptive, impact on software

industry, 107-113

free downloads, helping with bottom

line, 108

importance of, in open source

world, 107

of Linux distributions, ways to be

competitive, 260

numbers of, for open/closed

sources, 63

venture capitalists and dual licensing

businesses, 80-82

Verein zur Forderung Freier Software

(Austria), 167

vernacular architecture vs. magazine

architecture, 243

version control, 27-29

branching and, 28

viral licenses, 126

Virtual Reality, 392

virtual vs. physical products, building

businesses around, 356

virtual vs. physical world, 233

Visual Identity Team, 16

VMS system from Digital Equipment

Corporation, 46

Vo, loan, 313

"Voices from the Hellmouth" (Slashdot

column), 385

VoIP (Voice over Internet Protocol), 30

voluntary contributions to software and the

referee function, 368-371

voluntary information technology standards,

examples of, 123

voluntary vs. regulatory standards, 123

von Hippel, E., 340, 342, 356

von Mises, Ludwig, 148

vulnerabilities, classifying for severity, 62

W
Wagner, Frank, 299

Wales, Jimmy, 309-319, 326-329, 333

Wall, Larry, 262

"walled
garden" platform, 356

Walli, Stephen R., xxii, 121-136

Wal-Mart vs. Whole Foods (grocery

sales), 104, 113

Warot, Mike, 235

warranty and dual licensing, 76

Waterman, Andrew, 164

Weber, Max, 364

Weber, Niels, 163

Weber, Steven, xxiii, 361-372

weighting contributions in problem-solving

community, 368

Weinberger, David, 231, 233

Weizenbaum, J., 345

Wenger, Etienne, 365

White Revolution, 189

Whole Foods vs. Wal-Mart (grocery

sales), 104, 113

Whuffie, 236

"Why
Kids Kill" (Slashdot column), 384,

419-422

Widenius, Michael (Monty), 163, 170

widget libraries, 26

WikiEN-L mailing list, 325

WikiLove, treating contributors with, 331

Wikimedia Foundation, 331

Wikipedia, 307-338

controversies involving, 323-330

first few months of operation, 317-323

governance challenge to, 327-330

neutrality policy for articles, 320-323

origins of, 315-317

policies, origins of, 318

recent press reports about, 309-311

starting projects based on model

of, 334-338

why it worked, 321-323

Wikipedia-L mailing list, 325, 332

WikiWikiWeb, 315, 317

Win32 ACLs, 48-50

Win32 standard, 46-54

backward compatibility due to share

modes, 51

early adoption of Unicode standard, 52

examining the API, 47

future of, 53

vs. POSIX, choosing, 54

Windows NT, 46

Index

windsurfing industry

commercialization of, 346-347

developing equipment innovations

in, 340

importance of community-based

innovation, 347-350

Wine project, 48, 54

winelib shared library, 54

Winer, Dave, 234

Winter, S. G., 353

Winterstick, 346

workstations being replaced by PCs, 94, 134

world languages, applications written in, 52

"World of Ends" by Searls &
Weinberger, 233

World Trade Center recovery effort, 301-

303

write access to source code repository, 10

WRITE_DAC permission, 49

XChat (IRC client), 373, 390

XPCOM (cross-platform component

model), 7

Xteam (Chinese Linux distributor), 201

XUL (cross-platform XML-based UI

language), 7

Yankee Group, 111

YAPC::Europe, 166

Yeo, Boon-Lock, xxiii, 197-210

Yoon,Y.J., 355

Young, Bob, 257, 260

Zawinski, Jamie, 5

Ziedonis, R. K, 354

Index

XX

Colophon

JAMIE PEPPARD was the production editor and proofreader for Open Sources 2.0. Audrey Doyle was

the copyeditor. Adam Witwer and Claire Cloutier provided quality control. Judy Hoer wrote the

index. Loranah Dimant, Jansen Fernald, and Lydia Onofrei provided production assistance.

MIKE KOHNKE designed the cover of this book. Karen Montgomery produced the cover layout
in Adobe InDesign CS using Akzidenz Grotesk and Orator fonts.

MIKE KOHNKE designed the interior layout. This book was converted to FrameMaker 5.5.6 by
Andrew Savikas. The text font is Adobe s Meridien; the heading font is ITC Bailey. The illus

trations that appear in the book were produced by Robert Romano, Jessamyn Read, and

Lesley Borash using Macromedia FreeHand MX and Adobe Photoshop CS and using the

ORA hand font.

Search

thousands of

top tech books

Download
whole chapters

Cut and Paste

code examples

Find

answers fast

Better than e-books

Buy Open Sources 2.0 and access the

digital edition FREE on Safari for 45 days.

Go to www.oreilly.com/go/safarienabled

and type in coupon code B7LN-WNJM-4J13-5IM3-XHSP

Search Safari! The premier electronic reference

library for programmers and IT professionals.

? REILLY NETWORK

Safari

Bookshelf

TT 4

Addison

w""y o REiixr

AdobePress SAMS

A
Ridersl

Java cjue

Cisco Press

Related Titles from O Reilly

testdriving

hnux
from windows to linux

in 60 seconds

Linux

Building Embedded Linux Systems

Building Secure Servers

with Linux

The Complete FreeBSD,
4th Edition

Even Grues Get Full

Exploring the JDS Linux

Desktop

Extreme Programming Pocket

Guide

GDB Pocket Reference

Knoppix Hacks

Knoppix Pocket Guide

Learning Red Hat Enterprise
Linux and Fedora, 4th Edition

Linux Cookbook

Linux Desktop Hacks

Linux Device Drivers,

3rd Edition

Linux in a Nutshell, 5th Edition

Linux in a Windows World

Linux iptables Pocket

Reference

Linux Network Administrator s

Guide, 3rd Edition

Linux Pocket Guide

Linux Security Cookbook

Linux Server Hacks

Linux Unwired

Linux Web Server CD
Bookshelf, Version 2.0

LPI Linux Certification in a

Nutshell

Managing RAID on Linux

More Linux Server Hacks

OpenOffice.org Writer

Programming with Qt,

2nd Edition

Root of all Evil

Running Linux, 5th Edition

Samba Pocket Reference,
2nd Edition

Test Driving Linux

Understanding the Linux

Kernel, 3rd Edition

Understanding Open Source &
Free Software Licensing

User Friendly

Using Samba, 2nd Edition

Version Control with

Subversion

O REILLY Our books are available at most retail and online bookstores.

To order direct: 1-800-998-9938 order@oreilly.com www.oreilly.com

Online editions of most O Reilly titles are available by subscription at safari.oreilly.com

Keep in touch with O Reilly

Download examples from our books

To find example files from a book, go to:

www.oreilly.com/catalog select the book,
and follow the "Examples"

link.

Register your O Reilly books

Register your book at register.oreilly.com

Why register your books? Once you ve

registered your O Reilly books you can:

Win O Reilly books, T-shirts or discount

coupons in our monthly drawing.

Get special offers available only to

registered O Reilly customers.

Get catalogs announcing new books

(US and UK only).

Get email notification of new editions

of the O Reilly books you own.

Join our email lists

Sign up to get topic-specific email announ
cements of new books and conferences,

special offers, and O Reilly Network

technology newsletters at:

elists.oreilly.com

It s easy to customize your free elists subscrip
tion so you ll get exactly the O Reilly news

you want.

Get the latest news, tips, and tools

www.oreilly.com

"Top
100 Sites on the Web" PC Magazine

CIO Magazine s Web Business 50 Awards

Our web site contains a library of compre
hensive product information (including book

excerpts and tables of contents), downloadable

software, background articles, interviews with

technology leaders, links to relevant sites, book
cover art, and more.

Work for O Reilly

Check out our web site for current

employment opportunities:

jobs.oreilly.com

Contact us

O Reilly Media, Inc.

1005 Gravenstein Hwy North

Sebastopol, CA 95472 USA
Tel: 707-827-7000 or 800-998-9938

(6am to 5pm PST)
Fax: 707-829-0104

Contact us by email

For answers to problems regarding

your order or our products:

order@oreilly.com

To request a copy of our latest catalog:

catalog@oreilly.com

For book content technical questions
or corrections: booktech@oreilly.com

For educational, library, government,
and corporate sales: corporate@oreilly.com

To submit new book proposals to our

editors and product managers:

proposals@oreilly.com

For information about our international

distributors or translation queries:

international@oreilly.com

For information about academic
use of O Reilly books:

adoption@oreilly.com

or visit:

academic, oreilly.com

For a list of our distributors outside

of North America check out:

international.oreilly.com/distributors.html

Order a book online

www.oreilly.com/order_new

O REILLY Our books are available at most retail and online bookstores.

To order direct: 1-800-998-9938 order@oreilly.com www.oreilly.com

Online editions of most O Reilly titles are available by subscription at safari.oreilly.com

lecnnoiogy & society

open sources 2.0

XX
Boon-Lock

Yeo

Stephen
Walli

Mark

Stone

Bruno

Souza

Alolita

Sharma

Sonali

Wendy
Seltzer

Mitchell

Baker

Jeff

Bates

Jesus M.

Gonzalez-

Barahona

Open Sources 2.0 collects thought-provoking essays from today s technology leaders,

continuing the evolutionary picture developed in the 1999 book Open Sources: Voices

from the Revolution.

These essays explore open source s impact on the software industry and reveal how

open source concepts are infiltrating other areas of commerce and society. The

essays appeal to a broad audience. The software developer will find thoughtful

reflections on practices and methodology from leading open source developers.

The business executive will find analyses of business strategies from veteran open

source business leaders. And those interested in an international perspective will

find essays that describe the developing world s efforts to join the technology fore

front and use open source to take control of their high tech destiny. For anyone with

a strong interest in technology trends, this collection of essays is a must-read.

The enduring significance of open source goes well beyond high technology, however.

Driving this new paradigm is network-enabled distributed collaboration. The growing

impact of this model on all forms of online collaboration is fundamentally challenging

our modern notion of community.

What does the future hold? Veteran open source commentators offer their per

spectives, as do leading open source scholars. From Wikipedia to Slashdot, from

computer technology to biotechnology, these essays reveal frontline views of

functioning, flourishing, online collaborative communities.

The power of collaboration, enabled by the Internet and open source software, is

changing the world in ways we can only begin to imagine. Open Sources 2.0 further

develops the evolutionary picture that emerged with the original Open Sources and

expands on the transformative open source philosophy.

Pamela

Jones

Eugene
Kim

Laurie

Lawrence

Lessig

Doc

Searls

Sunil

Saxena
Larry

Sanger

Gregorio

Robles

Tim

O Reilly Olson Nelson

O REILLY www.oreilly.com

ISBN 0-596-00802-3 US$29.95 CAN $41.95

9 780596 008024 6 36920 00802 6
BOOKS ONLINE

Includes

FREE 45-Day
Online Edition

